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Detailed investigations of the structure of hadrons are essential for understanding
how matter is constructed from the quarks and gluons of QCD, and amongst the
questions posed to modern hadron physics, three stand out. What is the rigor-
ous, quantitative mechanism responsible for confinement? What is the connection
between confinement and dynamical chiral symmetry breaking? And are these
phenomena together sufficient to explain the origin of more than 98% of the mass
of the observable universe? Such questions may only be answered using the full ma-
chinery of nonperturbative relativistic quantum field theory. These lecture notes
provide an introduction to the application of Dyson-Schwinger equations in this
context, and a perspective on progress toward answering these key questions.
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1. Introduction

A theoretical understanding of the phenomena of Hadron Physics requires
the use of the full machinery of relativistic quantum field theory, which is
based on the relativistic quantum mechanics of Dirac, and is currently the
favoured way to reconcile quantum mechanics with special relativity.a

It is noteworthy that the unification of special relativity (viz., the re-
quirement that the equations of physics be Poincaré covariant) and quan-
tum mechanics took quite some time. Indeed, questions still remain as to a
practical implementation of an Hamiltonian formulation of the relativistic
quantum mechanics of interacting systems. The Poincaré group has ten
generators: six associated with the Lorentz transformations (rotations and
boosts); and four associated with translations. Quantum mechanics de-
scribes the time evolution of a system with interactions and that evolution
is generated by the Hamiltonian, or some generalisation thereof. However,
the Hamiltonian is one of the generators of the Poincaré group, and it is
apparent from the Poincaré algebra that boosts do not commute with the
Hamiltonian. Hence the state vector calculated in one momentum frame
will not be kinematically related to the state in another frame, a fact that
makes a new calculation necessary in every momentum frame. The discus-
sion of scattering, which takes a state of momentum p to another state with
momentum p′, is therefore problematic.2,3

Moreover, relativistic quantum mechanics predicts the existence of an-
tiparticles; i.e., the equations of relativistic quantum mechanics admit neg-
ative energy solutions. However, once one allows for negative energy, then
particle number conservation is lost:

Esystem = Esystem + (Ep1 + Ep̄1) + . . . ad infinitum, (1.1)

aIn the following we assume that the reader is familiar with the notation and conventions
of relativistic quantum mechanics. For those for whom that is not the case we recommend
Ref. [1], in particular Chaps. 1-6.
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where Ek̄ = −Ek. This poses a fundamental problem for relativistic quan-
tum mechanics: few particle systems can be studied, but the study of
(infinitely) many bodies is difficult and no general theory currently exists.

Relativistic quantum field theory provides a way forward. In this frame-
work the fundamental entities are fields, which can simultaneously repre-
sent infinitely many particles. The neutral scalar field, φ(x), provides an
example. One may write

φ(x) =
∫

d3k

(2π)3
1

2ωk

[
a(k)e−ik·x + a†(k)eik·x]

, (1.2)

where: ωk =
√
|~k|2 + m2 is the relativistic dispersion relation for a massive

particle; the four-vector (kµ) = (ωk,~k); a(k) is an annihilation (creation)
operator for a particle (antiparticle) with four-momentum k (−k); and a†(k)
is a creation (annihilation) operator for a particle (antiparticle) with four-
momentum k (−k). With this plane-wave expansion of the field one may
proceed to develop a framework in which the nonconservation of particle
number is not a problem. That is crucial because key observable phenomena
in hadron physics are essentially connected with the existence of virtual
particles.

Relativistic quantum field theory has its own problems, however. For
example, the question of whether a given quantum field theory is rigor-
ously well defined is an unsolved mathematical problem. All relativistic
quantum field theories admit analysis via perturbation theory, and per-
turbative renormalisation is a well-defined procedure that has long been
used in Quantum Electrodynamics (QED) and Quantum Chromodynamics
(QCD). However, a rigorous definition of a theory means proving that the
theory makes sense nonperturbatively. This is equivalent to proving that all
the theory’s renormalisation constants are nonperturbatively well-behaved.

An understanding of the properties of hadrons; viz., Hadron Physics,
involves QCD. This theory makes excellent sense perturbatively, as demon-
strated in the Nobel Prize winning work on asymptotic freedom by Gross,
Politzer and Wilczek.4 However, QCD is not known to be a rigorously well-
defined theory and hence it cannot yet truly be described as the theory of
the strong interaction.

Nevertheless, the development of an understanding of observable phe-
nomena cannot wait on mathematics. Assumptions must be made and their
consequences explored. Practitioners therefore assume that QCD is (some-
how) well-defined and follow where it may lead. In experiment that means
exploring and mapping the hadron physics landscape with well-understood
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probes, such as the electron at JLab; while in theory one employs estab-
lished mathematical tools, and refines and invents others in order to use
the Lagrangian of QCD to predict what should be observable real-world
phenomena.

A primary aim of the world’s current hadron physics programmes in
experiment and theory is to determine whether there are any contradictions
with what we can actually prove in QCD. Hitherto, there are none that are
uncontroversial.b In this field the interplay between experiment and theory
is the engine of discovery and progress, and the discovery potential of both
is high. Much has been learnt in the last five years and one can safely
expect that many surprises remain in Hadron Physics.

QCD is a local gauge theory, and such theories are the keystone of
contemporary hadron and high-energy physics. They are difficult to quan-
tise because one must deal with the gauge dependence, which is an extra
non-dynamical degree of freedom. The modern approach is to quantise
these theories using the method of functional integrals, and Refs. [7, 8] pro-
vide excellent descriptions. The method of functional integration replaces
canonical second-quantisation. One may view this approach as originating
in the path integral formulation of quantum mechanics.9 NB. In general,
mathematicians do not regard local gauge theory functional integrals as
well-defined.

In quantum field theory all physical amplitudes can be obtained from
Green functions, which are expectation values of time-ordered products
of fields measured with respect to the physical vacuum.c They describe
all the characteristics of an interacting system. The Green functions are
obtained from generating functionals, the specification of which begins with
the theory’s action expressed in terms of the Poincaré invariant Lagrangian
density.

An analysis of the generating functional for interacting bosons proceeds
almost classically. The field variables and functional derivatives can be
treated as “c-numbers”, and a perturbative truncation of any Green func-
tion can be obtained in a straightforward manner. A measure of clarity and
rigour may be introduced by interpreting spacetime as a discrete lattice of
points and recovering the continuum via a limiting procedure. On these
aspects, Appendix B of Ref. [8] is instructive. Following this route it is

bThe pion’s valence-quark distribution is one such contentious example.5,6

cThe physical or interacting vacuum is the analogue of the true ground state in quantum
mechanics.
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plain that in perturbation theory the vacuum is trivial; viz., features such
as dynamical symmetry breaking are impossible.

A complication is encountered in dealing with fermions; namely,
fermionic fields do not have a classical analogue because classical physics
does not contain anticommuting field variables. In order to treat fermions
using functional integrals one must employ Grassmann variables. Reference
[10] is the standard source for a rigorous discussion of Grassmann algebras,
and Appendix B of Ref. [8] is again instructive in this connection.

In order to illustrate some of the concepts described above we will work
through an example: the case of a noninteracting Dirac quantum field. The
Lagrangian density for the free Dirac field is

Lψ
0 (x) = ψ̄(x) (i∂/ −m)ψ(x) . (1.3)

Consider therefore the functional integral

W [Ξ̄,Ξ] =
∫

[Dψ̄(x)][Dψ(x)] e
i

∫
d4x ψ̄(x)

(
i∂/ −m + iη+

)
ψ(x)

× e
i

∫
d4x

(
ψ̄(x)Ξ(x) + Ξ̄(x)ψ(x)

)
, (1.4)

where η → 0+ as the last step in any calculation.d This is the generating
functional for complete n-point Green functions in the quantum field theory.
Here “complete” means that the n-point Green function, G(x1, x2, . . . , xn),
will include contributions from products of lower-order Green functions
(mi,mj , etc. < n); i.e., disconnected diagrams. In Eq. (1.4), ψ̄(x), ψ(x) are
identified with the generators of G, a Grassmann algebra with involution:
the latter means that an inner-product of sorts is defined. There is a minor
additional complication here – the spinor degree-of-freedom is implicit; i.e.,
to be explicit, one should write

4∏
r=1

[Dψ̄r(x)]
4∏

s=1

[ψs(x)]. (1.5)

However, that only adds a finite matrix degree-of-freedom to the problem,
which may easily be handled. In Eq. (1.4) we have introduced anticommut-
ing sources: Ξ̄(x), Ξ(x), which are also elements in G.

dη is a convergence factor, which is necessary to define the integral. It subsequently
appears in propagators and thereby implements Feynman boundary conditions, as dis-
cussed, e.g., in Ref. [8], App.B.
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To evaluate the free-field functional integral, which is Gaussian, one
writes

O(x, y) = (i∂/ −m + iη+)δ4(x− y) (1.6)

and observes that the solution of
∫

d4w O(x,w)P (w, y) = ID δ4(x− y) ; (1.7)

i.e., the inverse of the operator O(x, y), is precisely the free-fermion prop-
agator:

P (x, y) = S0(x− y) =
∫

d4p

(2π)4
e−ip·(x−y) S0(p) , (1.8)

with

S0(p) =
p/ + m

p2 −m2 + iη+
. (1.9)

NB. This can be verified by substitution, using {γµ, γν} = 2gµνID. It is
true in general that in the absence of external sources, n-point functions
are translationally invariant.

One can now rewrite Eq. (1.4) in the form

W [Ξ̄, Ξ] =
∫

[Dψ̄(x)][Dψ(x)] e
i

∫
d4xd4y ψ̄′(x)O(x, y)ψ′(y)

× e
−i

∫
d4xd4y Ξ̄(x) S0(x− y) Ξ(y)

, (1.10)

wherein

ψ̄′(x) := ψ̄(x) +
∫

d4w Ξ̄(w)S0(w − x) ,

ψ′(x) := ψ(x) +
∫

d4w S0(x− w) Ξ(w) .
(1.11)

The new fields ψ̄′(x) and ψ′(x) are still in G, and are related to the orig-
inal variables by a unitary transformation. Thus the change of variables
introduces only a unit Jacobian and hence

W [Ξ̄, Ξ] = e
−i

∫
d4xd4y Ξ̄(x) S0(x− y) Ξ(y)

×
∫

[Dψ̄′(x)][Dψ′(x)] e
i

∫
d4xd4y ψ̄′(x)O(x, y)ψ′(y)

. (1.12)
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The expression in the second line of this equation is a standard functional
integral:

e
i

∫
d4xd4y ψ̄′(x)O(x, y)ψ′(y)

= Det[O(x− y)] , (1.13)

where “Det” is a generalisation of the concept of a matrix determinant.
One therefore arrives at

W [Ξ̄, Ξ] =
1

Nψ
0

e
−i

∫
d4xd4y Ξ̄(x)S0(x− y) Ξ(y)

, (1.14)

where

Nψ
0 := Det[iS0(x− y)]. (1.15)

Clearly, with the definition in Eq. (1.4), Nψ
0 W [Ξ̄, Ξ]

∣∣
Ξ̄=0=Ξ

= 1. This is
not a convenient normalisation and it is therefore customary to redefine
W [Ξ̄,Ξ] so that Nψ

0 is included in the measure “[Dψ̄′(x)][Dψ′(x)]” and

W [Ξ̄,Ξ]
∣∣
Ξ̄=0=Ξ

= 1. (1.16)

The two-point Green function for the free-fermion quantum field theory
is now easily obtained:

δ2W [Ξ̄, Ξ]
iδΞ̄(x) (−i)δΞ(y)

∣∣∣∣
Ξ̄=0=Ξ

=:
〈0|T{ψ̂(x) ˆ̄ψ(y)}|0〉

〈0|0〉

=
∫

[Dψ̄(x)][Dψ(x)] ψ(x)ψ̄(y) e
i

∫
d4x ψ̄(x)

(
i∂/ −m + iη+

)
ψ(x)

.(1.17)

The functional differentiation in Eq. (1.14) is straightforward and yields

δ2W [Ξ̄, Ξ]
iδΞ̄(x) (−i)δΞ(y)

∣∣∣∣
Ξ̄=0=Ξ

= i S0(x− y) ; (1.18)

i.e., the inverse of the Dirac operator.
It is useful to have systematic procedure for the a priori elimination of

disconnected parts from n-point Green functions because the recalculation
of m < n-point Green functions at every stage is inefficient. The generating
functional for “connected” n-point Green functions, Z[Ξ̄,Ξ], is defined via:

W [Ξ̄, Ξ] =: exp
{
iZ[Ξ̄,Ξ]

}
. (1.19)

It follows immediately from Eq. (1.14) that

Z[Ξ̄, Ξ] = −
∫

d4x d4y Ξ̄(x) S0(x− y) Ξ(y) . (1.20)
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This equation states that for a noninteracting field, there is one, and only
one, connected Green function; namely, the free particle propagator, which
is the simplest possible Green function. NB. It is a property of theories
based on a Grassmann algebra with involution that one-point Green func-
tions for fermions are identically zero in the absence of external sources.

At this point it is useful to illustrate what is meant by the functional
determinant introduced above; i.e., Det[O], where O is an integral operator.
This is relevant owing to the importance of this fermion determinant and its
absence, e.g., in numerical simulations of lattice-regularised QCD. Consider
a translationally invariant operator

O(x, y) = O(x− y) =
∫

d4p

(2π)4
O(p) e−ip·(x−y). (1.21)

Then, for any function f that may be expressed as a power series on some
domain:

f(x) =
∞∑

i=0

fix
i , (1.22)

we have

f [O(x− y)] =
∫

d4p

(2π)4
{
f0 + f1 O(p) + f2 O(p)2 + [. . .]

}
e−ip·(x−y)

=
∫

d4p

(2π)4
f(O(p)) e−ip·(x−y) . (1.23)

This expression may be applied directly to Nψ
0 = Det[iS0(x − y)]. To

that end we proceed by noting

S0(p) = m ∆0(p2)
[
1 +

p/

m

]
, ∆0(p2) =

1
p2 −m2 + iη+

, (1.24)

⇒ S0(x− y) =
∫

d4w m ∆0(x− w)F (w − y) , (1.25)

with ∆0(x− y) the obvious Fourier transform of ∆0(p2), and

F (x− y) =
∫

d4p

(2π)4

[
1 +

p/

m

]
e−ip·(x−y) . (1.26)

We now remark that for a bilocal operator P (x, y)

TrP :=
∫

d4x trP (x, x) , (1.27)
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where “tr” indicates a trace over whatever matrix structure is present.
Thus Eq. (1.22) entails that TrLn[O] = LnDet[O], in addition to the more
obvious result Ln[AB] = Ln[A] + Ln[B]. Hence

TrLn iS0(x− y) = Tr
{
Ln im∆0(x− y) + Ln

[
δ4(x− y) + F (x− y)

]}
.

(1.28)
Applying Eq. (1.23) to the second term above one obtains

TrLn
[
δ4(x− y) + F (x− y)

]
=

∫
d4x

∫
d4p

(2π)4
tr ln [1 + F (p)]

=
∫

d4x

∫
d4p

(2π)4
2 ln

[
1− p2

m2

]
, (1.29)

while the first term givese

TrLn im∆0(x− y) =
∫

d4x

∫
d4p

(2π)4
2 ln

[
im∆0(p2)

]2
. (1.30)

Combining this result with Eq. (1.29) yields

Ln Nψ
0 = TrLn iS0(x− y) =

∫
d4x

∫
d4p

(2π)4
2 ln ∆0(p2) , (1.31)

where the factor “2” reflects the spin-degeneracy of the free-fermion’s eigen-
values. NB. Upon the inclusion of a “colour” degree-of-freedom, as in QCD,
this would become “2 Nc,” where Nc is the number of colours.

The interpretation of Eq. (1.31) is straightforward. As is the case for
finite dimensional matrices; viz.,

ln det M = ln
∏

i

λM
i =

∑

i

ln λM
i , (1.32)

the logarithm of the determinant of an operator is simply the logarithm of
the product of the operator’s eigenvalues, which is equivalent to the sum of
the logarithms of these eigenvalues. In our particular instance, there is a
continuum of eigenvalues for the inverse of the free Dirac operator. For each
value of three-momentum ~p, we have two spins and a positive and negative
energy solution. The product of these four eigenvalues is described by the
function ∆0(p2)2. Finally, the integral over momentum in Eq. (1.31) is the
analogue of the sum in Eq. (1.32). This picture generalises to the case of
more complicated Dirac operators.

eIn both cases the multiplicative factor
∫

d4x simply measures the (infinite) volume of
spacetime. The factor poses no problems in a properly regularised theory.
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Thus far we have made little mention of gauge-boson fields; namely, pho-
tons, gluons, etc. A generating functional for gauge field n-point functions
can be constructed. The primary difficulty in this instance is the problem of
gauge fixing, which is not yet fully resolved. The so-called Faddeev-Popov
determinant is one part of the solution. That determinant can be expressed
through the introduction of dynamical ghost fields. We will not write more
on the issue herein.f The omission is not crucial for our development. At
this point, the basic qualitative ideas of the functional integral formulation
of relativistic quantum field theory have been presented.

2. Dyson-Schwinger Equation Primer

It has long been known that from the field equations of quantum field
theory one can derive a system of coupled integral equations interrelating
all of a theory’s Green functions 12,13. This collection of a countable infinity
of equations is called the complex of Dyson-Schwinger equations (DSEs).
It is an intrinsically nonperturbative structure, which is vitally important
in proving the renormalisability of quantum field theories. Moreover, at
its simplest level the complex provides a generating tool for perturbation
theory. In the context of quantum electrodynamics (QED) we will illustrate
a nonperturbative derivation of two DSEs. The derivation of others follows
the same pattern.

2.1. Photon Vacuum Polarisation

The vacuum polarisation is an essentially quantum field theoretical effect
and an important part of the Lamb shift. It may be derived from the action
for QED with Nf flavours of electromagnetically active fermions:

S[Aµ, ψ, ψ̄] =
∫

d4x




Nf∑

f=1

ψ̄f (x)
(
i 6∂ −mf

0 + ef
0 6A

)
ψf (x)

−1
4
Fµν(x)Fµν(x)− 1

2ξ0
∂µAµ(x) ∂νAν(x)

]
. (2.1)

The action is manifestly Poincaré covariant. ψ̄f (x), ψf (x) are elements of
a Grassmann algebra with involution that describe the fermion degrees of

fA pedagogical introduction is provided in Appendix B of Ref. [8] and a contemporary
perspective may be traced from Ref. [11] and references therein.
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freedom, with mf
0 representing the fermions’ bare masses. Aµ(x) describes

the gauge boson [photon] field, with

Fµν = ∂µAν − ∂νAµ (2.2)

and ξ0 the bare gauge fixing parameter. Interactions in the theory are
generated by a simple coupling term in the first line of Eq. (2.1): ψ̄fef

0 6Aψf ,
which is linear in all the field variables and has a coupling constant, ef

0 ,
that represents the fermion charges. (NB. Throughout we use c = 1 = ~,
in which case ef

0 has mass-dimension zero. To describe an electron the
physical charge ef < 0.)

One can write the complete generating functional for this theory:

W [Jµ,Ξ, Ξ̄ ] =
∫

[DAµ] [Dψ][Dψ̄] exp
{

i

∫
d4xS[Aµ, ψ, ψ̄ ]

+Jµ(x)Aµ(x) + Ξ̄f (x)ψf (x) + ψ̄f (x)Ξf (x)
}

, (2.3)

where Jµ is an external source for the electromagnetic field, and Ξf , Ξ̄f are
external sources for the fermion fields that are, of course, elements in the
Grassmann algebra. As we noted in Sec. 1, it is advantageous to work with
the generating functional of connected Green functions; i.e., Z[Jµ, Ξ, Ξ̄ ]
defined via

W [Jµ,Ξ, Ξ̄ ] =: exp
{
iZ[Jµ, Ξ, Ξ̄]

}
, (2.4)

and that is how we proceed.
The derivation of a DSE now follows simply from an observation that

the integral of a total derivative vanishes, given appropriate boundary con-
ditions; e.g.,

0 =
∫

[DAµ] [Dψ][Dψ̄]
δ

δAµ(x)
exp

(
iS[Aµ, ψ, ψ̄ ]

+i

∫
d4x

[
ψ̄fΞf + Ξ̄fψf + AµJµ

] )
(2.5)

=
∫

[DAµ] [Dψ][Dψ̄]
{

δS

δAµ(x)
+ Jµ(x)

}

× exp
{

i

(
S[Aµ, ψ, ψ̄ ] +

∫
d4x

[
ψ̄fΞf + Ξ̄fψf + AµJµ

])}

=
{

δS

δAµ(x)

[
δ

iδJ
,

δ

iδΞ̄
,− δ

iδΞ

]
+ Jµ(x)

}
W [Jµ, Ξ, Ξ̄] , (2.6)
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where the last line has meaning as a functional differential operator acting
on the generating functional.

One now needs to differentiate Eq. (2.1):

δS

δAµ(x)
=

[
∂ρ∂

ρgµν −
(

1− 1
ξ0

)
∂µ∂ν

]
Aν(x) +

∑

f

ef
0 ψ̄f (x)γµψf (x) ,

(2.7)
in which case Eq. (2.6) becomes

−Jµ(x) =
[
∂ρ∂

ρgµν −
(

1− 1
ξ0

)
∂µ∂ν

]
δZ

δJν(x)

+
∑

f

ef
0

(
− δZ

δΞf (x)
γµ

δZ

δΞ̄f (x)
+

δ

δΞf (x)

[
γµ

δ iZ

δΞ̄f (x)

])
,

(2.8)

where we have eliminated a common factor of W [Jµ,Ξ, Ξ̄]. Equation (2.8)
represents a compact form of the nonperturbative equivalent of Maxwell’s
equations.

A valuable step now is the introduction of a generating functional for
one-particle-irreducible (1PI) Green functions, Γ[Aµ, ψ, ψ̄ ]. It is obtained
from Z[Jµ,Ξ, Ξ̄ ] via a Legendre transformation; namely,

Z[Jµ, Ξ, Ξ̄ ] = Γ[Aµ, ψ, ψ̄ ] +
∫

d4x
[
ψ̄fΞf + Ξ̄fψf + AµJµ

]
. (2.9)

A 1PI n-point function or “proper vertex” does not contain any contribution
that becomes disconnected when a single connected m-point Green function
is removed; e.g., via functional differentiation. This means that no diagram
which represents or contributes to a given proper vertex separates into two
disconnected diagrams if only one connected propagator is cut. (A detailed
explanation can be found in Ref. [7], pp. 289-294.)

Consider Eq. (2.3) and observe that

δZ

δJµ(x)
= Aµ(x) ,

δZ

δΞ̄(x)
= ψ(x) ,

δZ

δΞ(x)
= −ψ̄(x) , (2.10)

where here the external sources are nonzero. It follows that Γ in Eq. (2.9)
must satisfy

δΓ
δAµ(x)

= −Jµ(x) ,
δΓ

δψ̄f (x)
= −Ξf (x) ,

δΓ
δψf (x)

= Ξ̄f (x) . (2.11)

Here one must bear in mind that since the sources are not zero then, e.g.,

Aρ(x) = Aρ(x; [Jµ,Ξ, Ξ̄ ]) ⇒ δAρ(x)
δJµ(y)

6= 0 , (2.12)
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with analogous statements for the Grassmannian functional derivatives.
NB. It follows from the general properties of Grassmann variables that if
one sets ψ̄ = 0 = ψ after differentiating Γ then the result is zero unless
there are equal numbers of ψ̄ and ψ derivatives.

Consider now the operator and matrix product (r, s, t are spinor labels)

−
∫

d4z
δ2Z

δΞf
r (x)Ξ̄h

t (z)

δ2Γ
δψh

t (z)ψ̄g
s (y)

∣∣∣∣∣ Ξ = Ξ̄ = 0
ψ = ψ = 0

. (2.13)

Using Eqs. (2.10), (2.11), this simplifies as follows:

=
∫

d4z
δψh

t (z)

δΞf
r (x)

δΞg
s(y)

δψh
t (z)

∣∣∣∣∣ Ξ = Ξ̄ = 0
ψ = ψ = 0

=
δΞg

s(y)

δΞf
r (x)

∣∣∣∣∣
ψ = ψ = 0

= δrs δfg δ4(x− y) . (2.14)

This result is useful in Maxwell’s equation, Eq. (2.8), whereupon substitu-
tion and setting Ξ̄ = 0 = Ξ subsequently yields

δΓ
δAµ(x)

∣∣∣∣
ψ=ψ=0

=
[
∂ρ∂

ρgµν −
(

1− 1
ξ0

)
∂µ∂ν

]
Aν(x)

− i
∑

f

ef
0 tr

[
γµSf (x, x; [Aµ])

]
, (2.15)

wherein we have made the identification (no summation on f)

Sf (x, y; [Aµ]) = − δ2Z

δΞf (y)Ξ̄f (x)
=

δ2Z

δΞ̄f (x)Ξf (y)
, (2.16)

which is an obvious consequence of Eq. (1.20) for a noninteracting theory
and the natural definition of the connected fermion two-point function in an
interacting theory. Clearly, the vacuum fermion propagator or connected
fermion two-point function is

Sf (x, y) := Sf (x, y; [Aµ = 0]) . (2.17)

Such vacuum Green functions are the keystones of quantum field theory.
As a direct consequence of Eqs. (2.13), (2.14), it is apparent that the

inverse of the Green function in Eq. (2.16) is

Sf (x, y; [A])−1 =
δ2Γ

δψf (x)δψ̄f (y)

∣∣∣∣
ψ=ψ=0

. (2.18)
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This illustrates a general property: functional derivatives of the generating
functional for 1PI Green functions are always related to the associated n-
point function’s inverse.

To continue, we differentiate Eq. (2.15) with respect to Aν(y) and set
Jµ(x) = 0 to obtain

δ2Γ
δAµ(x)δAν(y)

∣∣∣∣ Aµ = 0
ψ = ψ = 0

=
[
∂ρ∂

ρgµν −
(

1− 1
ξ0

)
∂µ∂ν

]
δ4(x− y)

−i
∑

f

ef
0 tr


γµ

δ

δAν(y)

(
δ2Γ

δψf (x)δψ̄f (x)

∣∣∣∣
ψ=ψ=0

)−1

 . (2.19)

The left-hand-side (lhs) of this equation is easily understood: Eq. (2.18)
expresses the inverse of the fermion propagator and here, in analogy, we
have the inverse of the gauge-boson propagator

(D−1)µν(x, y) :=
δ2Γ

δAµ(x)δAν(y)

∣∣∣∣ Aµ = 0
ψ = ψ = 0

. (2.20)

The right-hand-side (rhs), however, requires simplification before inter-
pretation. First observe that

− δ

δAν(y)

(
δ2Γ

δψf (x)δψ̄f (x)

∣∣∣∣
ψ=ψ=0

)−1

=
∫

d4ud4w

(
δ2Γ

δψf (x)δψ̄f (w)

∣∣∣∣
ψ=ψ=0

)−1

× δ

δAν(y)
δ2Γ

δψf (u)δψ̄f (w)

(
δ2Γ

δψf (w)δψ̄f (x)

∣∣∣∣
ψ=ψ=0

)−1

. (2.21)

This is merely an analogue of a result pertaining to finite dimensional ma-
trices:

d

dx

[
A(x)A(x)−1 = I

]
= 0 =

dA(x)
dx

A(x)−1 + A(x)
dA(x)−1

dx

⇒ dA(x)−1

dx
= −A(x)−1 dA(x)

dx
A(x)−1 .

(2.22)
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Equation (2.21) contains a new 1PI three-point function; namely,

ef
0Γf

µ(x, y; z) :=
δ

δAµ(z)
δ2Γ

δψf (x)δψ̄f (y)
, (2.23)

which is the proper fermion-gauge-boson vertex. At leading order in per-
turbation theory

Γf
ν (x, y; z) = γν δ4(x− z) δ4(y − z) , (2.24)

a result that can be obtained via explicit calculation of the functional deriva-
tives in Eq. (2.23).

It is now evident that the second derivative of the generating functional
for one-particle-irreducible Green functions, Γ[Aµ, ψ, ψ̄], gives the inverse-
fermion and -photon propagators, and the third derivative gives the proper
photon-fermion vertex. It is a general rule that all derivatives of Γ[Aµ, ψ, ψ̄],
higher than two, produce a proper vertex, where the number and type of
derivatives gives the number and type of proper Green functions that the
vertex can connect.

At this point it is useful to introduce the gauge-boson vacuum polarisa-
tion:

Πµν(x, y) = i
∑

f

(ef
0 )2

∫
d4z1 d4z2 tr

[
γµSf (x, z1)Γf

ν (z1, z2; y)Sf (z2, x)
]
.

(2.25)
It is the photon’s self-energy and describes the modification of the gauge-
boson’s propagation characteristics owing to the presence of virtual particle-
antiparticle pairs in quantum field theory. It is an essential element of
quantum electrodynamics and, e.g., plays an important part in the descrip-
tion of a physical process such as ρ0 → e+e−. With the aid of Eq. (2.25),
Eq. (2.19) can be written in a compact form:

(D−1)µν(x, y) =
[
∂ρ∂

ρgµν −
(

1− 1
ξ0

)
∂µ∂ν

]
δ4(x−y)+Πµν(x, y) . (2.26)

The two-point Green function (propagator) for a noninteracting gauge
boson field is plainly given by Eq. (2.26) in the absence of the photon’s
self-energy; viz., Π ≡ 0, and thus in momentum space, making use of the
translational invariance,

Dµν
0 (q) =

−gµν + (qµqν/[q2 + iη+])
q2 + iη+

− ξ0
qµqν

(q2 + iη+)2
. (2.27)

It follows that Eq. (2.26) can be written iD = iD0 + iD0 iΠ iD, and thus
we have our first DSE, which is represented diagrammatically in Fig. 1.
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Figure 1. Dyson-Schwinger equation for the photon propagator. Diagram a) expresses
the photon self-energy in terms of the connected fermion two-point functions (dressed-
propagators – lines with filled circle) and the one-particle-irreducible electron-photon
vertex (proper three-point function – junction with the open circle). (“iγ” denotes the
bare quark-photon vertex.) Diagram b) expresses the iteration of the proper self-energy
driving term to obtain the connected photon propagator. (Adapted from Ref. [14].)

In the presence of interactions; i.e., for Πµν 6= 0 in Eq. (2.26), one finds

Dµν(q) =
−gµν + (qµqν/[q2 + iη+])

q2 + iη+

1
1 + Π(q2)

− ξ0
qµqν

(q2 + iη+)2
. (2.28)

In obtaining this result we used the “Ward-Takahashi identity” for the
photon vacuum polarisation; namely,

qµ Πµν(q) = 0 = Πµν(q) qν (2.29)

⇒ Πµν(q) =
(−gµνq2 + qµqν

)
Π(q2) . (2.30)

The quantity Π(q2) may be described as the polarisation scalar. It is inde-
pendent of the gauge parameter, ξ0, in QED. On the subject of the gauge
parameter, ξ0 = 1 is called the “Feynman gauge.” It is useful in perturba-
tive calculations because it simplifies the Π(q2) = 0 gauge boson propagator
enormously. In nonperturbative applications, however, ξ0 = 0, the “Lan-
dau gauge,” is most useful because it ensures the gauge boson propagator is
itself transverse. NB. Landau gauge is a fixed point of the renormalisation
group.

Ward-Takahashi identities (WTIs) are relations satisfied by combina-
tions of Green functions. They are an essential consequence of a theory’s
local gauge invariance; i.e., local current conservation, and play a crucial
role. The WTIs can be proved directly from the generating functional and
have physical implications. For example, Eq. (2.30) ensures that the pho-
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ton remains massless in the presence of charged fermions.g A discussion of
WTIs can be found in Ref. [7], pp. 407-411, and Ref. [21], pp. 299-303. In
their generalisation to non-Abelian gauge field theories, WTIs are described
as Slavnov-Taylor identities and in this guise they are discussed in Ref. [8],
Chap. 2.

As we have observed, in the absence of external sources, Eq. (2.25) can
easily be represented in momentum space because then the two- and three-
point functions appearing therein must be translationally invariant and
hence can simply be expressed in terms of Fourier amplitudes; viz.,

iΠµν(q) = −
∑

f

(ef
0 )2

∫
d4`

(2π)4
tr[(iγµ)(iSf (`))(iΓf

ν (`, ` + q))(iSf (` + q))] .

(2.31)
The ability to express 1PI functions via a single integral makes momentum
space representations the most widely used in continuum calculations.

With Eq. (2.31) we have reached our first goal: the DSE for the photon
vacuum polarisation. In QED this quantity is directly related to the run-
ning coupling constant, which is a connection that makes its importance
obvious. In QCD there are other contributions but the polarisation scalar
is nevertheless a key component in the evaluation of the strong running
coupling.

2.2. Fermion Gap Equation

Equation (2.8) is a nonperturbative generalisation of Maxwell’s equation in
quantum field theory. Its derivation provides the pattern by which one can
obtain an equivalent generalisation of Dirac’s equation:

0 =
∫

[DAµ] [Dψ][Dψ̄]
δ

δψ̄f (x)
exp

(
iS[Aµ, ψ, ψ̄ ]

+i

∫
d4x

[
ψ̄gΞg + Ξ̄gψg + AµJµ

] )

=
∫

[DAµ] [Dψ][Dψ̄]
{

δS

δψ̄f (x)
+ Ξf (x)

}

× exp
{

i

(
S[Aµ, ψ, ψ̄] +

∫
d4x

[
ψ̄gΞg + Ξ̄gψg + AµJµ

])}

=
{

δS

δψ̄f (x)

[
δ

iδJ
,

δ

iδΞ̄
,− δ

iδΞ

]
+ ηf (x)

}
W [Jµ, Ξ, Ξ̄ ] (2.32)

gThis is analysed, e.g., in Ref. [15], which also discusses aspects of gauge covariance, a
modern understanding of which may be traced from Refs. [16, 17] to Refs. [18, 19, 20].
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and hence

0 =
[
Ξf (x) +

(
i 6∂ −mf

0 + ef
0γµ δ

iδJµ(x)

)
δ

iδΞ̄f (x)

]
W [Jµ, Ξ, Ξ̄], (2.33)

which is the nonperturbative functional equivalent of Dirac’s equation that
we sought.

The next step is to apply a functional derivative with respect to Ξf :
δ/δΞf (y), which yields

0 = δ4(x− y)W [Jµ]−
(

i 6∂ −mf
0 + ef

0γµ δ

iδJµ(x)

)
W [Jµ] Sf (x, y; [Aµ]) ,

(2.34)
after setting Ξf = 0 = Ξ̄f , where W [Jµ] := W [Jµ, 0, 0] and S(x, y; [Aµ]) is
defined in Eq. (2.16). Now, using Eqs. (2.4), (2.11), this can be rewritten

δ4(x− y)−
(

i 6∂ −mf
0 + ef

0 6A(x; [J ]) + ef
0γµ δ

iδJµ(x)

)
Sf (x, y; [Aµ]) = 0 ,

(2.35)
which defines the nonperturbative connected two-point fermion Green func-
tion.

As the electromagnetic four-potential vanishes in the absence of an ex-
ternal source; i.e., Aµ(x; [J = 0]) = 0, it remains only to exhibit the content
of the remaining functional differentiation in Eq. (2.35), which can be ac-
complished using Eq. (2.21):

δ

iδJµ(x)
Sf (x, y; [Aµ]) =

∫
d4z

δAν(z)
iδJµ(x)

δ

δAν(z)

(
δ2Γ

δψf (x)δψ̄f (y)

∣∣∣∣
ψ=ψ=0

)−1

= −ef
0

∫
d4z d4u d4w

δAν(z)
iδJµ(x)

Sf (x, u) Γν(u, w; z)Sf (w, y)

= −ef
0

∫
d4z d4u d4w iDµν(x− z) Sf (x, u) Γν(u,w; z) Sf (w, y).(2.36)

In the last line we set J = 0 and used Eq. (2.20). It is now evident that in
the absence of external sources Eq. (2.35) is equivalent to

δ4(x− y) =
(
i 6∂ −mf

0

)
Sf (x, y)

−i (ef
0 )2

∫
d4z d4u d4w Dµν(x, z) γµ Sf (x, u) Γν(u, w; z)Sf (w, y).(2.37)

In Eq. (2.25) the proper photon vacuum polarisation was introduced to
re-express the DSE for the gauge boson propagator. One can analogously
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Figure 2. Dyson-Schwinger equation for the fermion propagator. Diagram a) expresses
a charged fermion’s self-energy in terms of that fermion’s connected two-point function
(Eq. (2.41), dressed-propagator – straight line with filled circle), the photon’s connected
two-point function (Eq. (2.28), dressed-propagator – wavy line with filled circle) and the
one-particle-irreducible electron-photon vertex (proper three-point function – junction
with the open circle). (“iγ” denotes the bare quark-photon vertex.) Diagram b) expresses
the iteration of the proper self-energy driving term to obtain the connected fermion
propagator. (Adapted from Ref. [14].)

define a proper fermion self-energy:

Σf (x, z) = i(ef
0 )2

∫
d4u d4w Dµν(x, z) γµ Sf (x, u) Γν(u,w; z) , (2.38)

in which case Eq. (2.37) assumes the form
∫

d4z
[(

i 6∂x −mf
0

)
δ4(x− z)− Σf (x, z)

]
Sf (z, y) = δ4(x− y) . (2.39)

Once more using the property that Green functions are translationally in-
variant in the absence of external sources, Eq. (2.38) becomes

− iΣf (p) = (ef
0 )2

∫
d4`

(2π)4
[iDµν(p− `)] [iγµ] [iSf (`)] [iΓf

ν (`, p)] . (2.40)

It now follows from Eq. (2.39) that in momentum space the connected
fermion two-point function is

Sf (p) =
1

6p−mf
0 − Σf (p) + iη+

. (2.41)

Equation (2.40), depicted in Fig. 2, is the exact Gap Equation. It de-
scribes the manner in which the propagation characteristics of a charged
fermion moving through the ground state of QED (the QED vacuum) are
altered by the repeated emission and reabsorption of virtual photons. It is
evident that Eqs. (2.31) and (2.40) are coupled via Eqs. (2.28) and (2.41).



January 27, 2006 12:22 Proceedings Trim Size: 9in x 6in CDRoberts

20

Figure 3. The Dirac spectrum of a free particle in a box. (In this figure, c is retained.)
In Dirac’s hole picture, the negative energy states are fully occupied by negative energy
electrons. This is the Dirac sea ground state. In the usual scattering theory, bound
states appear with an energy less-than the sum of the masses of the constituents and are
thus indicated here as appearing with negative energy.

The gap equation can also describe real processes, e.g., Bremsstrahlung.
Moreover, as we shall see, a solution of the analogous equation in QCD
provides information about dynamical chiral symmetry breaking and also
quark confinement.

It is natural to ask why Eq. (2.40) is called the gap equation. The name
may be traced to the particle-hole interpretation of the Dirac equation’s
solutions. The Dirac equation for a free fermion in a box admits infinitely
many solutions with positive energy and an equal number with negative
energy. As illustrated in Fig. 3, the negative energy solutions are separated
from the positive energy solutions by a gap whose width is 2m, where m is
the fermion’s mass. This is the mass gap. In order to avoid the catastrophe
of positive energy fermions cascading into the negative energy levels, Dirac
formulated the hole theory, which postulates that all the negative energy
levels are already occupied by fermions. Then, in accordance with the
Pauli exclusion principle, the states are not accessible to positive energy
fermions. The negative energy fermions form the Dirac sea. A fermion
at the surface of the sea can be excited to a positive energy level if it
receives an energy transfer > 2m; i.e., an energy deposit that is sufficient
to bridge the mass gap. Should that occur, the system has one energy +|E|
fermion with charge −|e| and a hole in the Dirac sea, which is registered
as the absence of a fermion with charge −|e| and energy −E. This absence
may equally be interpreted by an observer as the presence of a object with
charge +|e| and energy +E; namely, an antifermion. It is plain that the
mass gap vanishes for a massless fermion. However, as we shall see, there
are interactions for which a self-consistent solution of Eq. (2.40) generates
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an effective mass for the fermion even though the perturbative (or Dirac
equation) mass vanishes. In this instance the fermion DSE describes the
dynamical generation of a mass gap.

Dynamical mass generation, which is also called dynamical chiral sym-
metry breaking (DCSB), is a keystone of hadron physics. However, in order
to understand DCSB one must first come to terms with explicit chiral sym-
metry breaking. Consider then the DSE for the quark self-energy in QCD:

− i Σ(p) = g2
0

∫
d4`

(2π)4
iDµν(p− `)

i

2
λaγµ iS(`) iΓa

ν(`, p) , (2.42)

where the flavour label is suppressed. The form of this equation is the same
as the gap equation in QED, Eq. (2.40), except for the following:

• colour (Gell-Mann) matrices: {λa; a = 1, . . . , 8}, appear at the
fermion-gauge-boson vertex;

• Dµν(`) represents the colour-diagonal connected gluon two-point
function;

• and Γa
ν(`, `′) is the proper quark-gluon vertex.

The one-loop (leading perturbative order) contribution to a quark’s
self-energy is obtained by evaluating the rhs of Eq. (2.42) with the
free/noninteracting quark and gluon propagators, and the quark-gluon ver-
tex:

Γa (0)
ν (`, `′) =

1
2
λaγν , (2.43)

which yields

− i Σ(2)(p) = −g2
0

∫
d4k

(2π)4

(
−gµν + (1− ξ0)

kµkν

k2 + iη+

)
1

k2 + iη+

× i

2
λaγµ

1
6k+ 6p−m0 + iη+

i

2
λaγµ . (2.44)

Equation (2.44) can be re-expressed as

−i Σ(2)(p) = −g2
0 C2(R)

∫
d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1
k2 + iη+

×
{

γµ (6k+ 6p + m0) γµ − (1− ξ0) (6k− 6p + m0)− 2 (1− ξ0)
k · p 6k

k2 + iη+

}
,

(2.45)

where we have used
1
2
λa 1

2
λa = C2(R) Ic ; C2(R) =

N2
c − 1
2Nc

, (2.46)
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with Nc the number of colours (Nc = 3 in QCD), and Ic is the identity
matrix in colour space. Note now that

2 k · p = [(k + p)2 −m2
0]− [k2]− [p2 −m2

0] (2.47)

and hence

− i Σ(2)(p) = −g2
0 C2(R)

∫
d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1
k2 + iη+

{
γµ (6k+ 6p + m0) γµ + (1− ξ0) ( 6p−m0)

+ (1− ξ0) (p2 −m2
0)

6k
k2 + iη+

− (1− ξ0) [(k + p)2 −m2
0]

6k
k2 + iη+

}
. (2.48)

Let’s focus now on the last term in Eq. (2.48):
∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1
k2 + iη+

[(k + p)2 −m2
0]

6k
k2 + iη+

=
∫

d4k

(2π)4
1

k2 + iη+

6k
k2 + iη+

= 0 (2.49)

because the integrand is odd under k → −k, and so this term in Eq. (2.48)
vanishes.

The second term in Eq. (2.48):

(1− ξ0) ( 6p−m0)
∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1
k2 + iη+

,

is more interesting. To understand why, we will consider the behaviour of
the integrand at large k2:

1
(k + p)2 −m2

0 + iη+

1
k2 + iη+

k2→±∞∼ 1
(k2 −m2

0 + iη+) (k2 + iη+)
.

(2.50)
The integrand has poles in the second and fourth quadrants of the

complex-k0-plane but vanishes on any circle of radius R →∞ in this plane.
That means one may rotate the contour anticlockwise to find∫ ∞

0

dk0 1
(k2 −m2

0 + iη+) (k2 + iη+)

=
∫ i∞

0

dk0 1

([k0]2 − ~k2 −m2
0 + iη+)([k0]2 − ~k2 + iη+)

k0→ik4= i

∫ ∞

0

dk4
1

(−k2
4 − ~k2 −m2

0) (−k2
4 − ~k2)

. (2.51)
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Performing a similar analysis of the
∫ 0

−∞ part, one obtains the complete
result:

∫
d4k

(2π)4
1

(k2 −m2
0 + iη+) (k2 + iη+)

= i

∫
d3k

(2π)3

∫ ∞

−∞

dk4

2π

1

(−~k2 − k2
4 −m2

0) (−~k2 − k2
4)

. (2.52)

These two steps constitute what is called a Wick rotation.
The integral on the rhs in Eq. (2.52) is defined in a four-dimensional

Euclidean space; i.e., k2 := k2
1 + k2

2 + k2
3 + k2

4 ≥ 0, with k2 nonnegative. A
general vector in this space can be written in the form:

(k) = |k| (cos φ sin θ sinβ, sin φ sin θ sin β, cos θ sinβ, cosβ) ; (2.53)

i.e., using hyperspherical coordinates, and clearly k2 = |k|2. Using these
coordinates the four-vector measure factor is∫

d4
Ek f(k1, . . . , k4)

=
1
2

∫ ∞

0

dk2 k2

∫ π

0

dβ sin2β

∫ π

0

dθ sin θ

∫ 2π

0

dφ f(k, β, θ, φ) .

(2.54)

Integration is straightforward because of the non-negative metric.
We now return to Eq. (2.50) wherein, making use of the material just

introduced, the large k2 behaviour of the integral can be determined via
∫

d4k

(2π)4
1

(k + p)2 −m2
0 + iη+

1
k2 + iη+

≈ i

16π2

∫ ∞

0

dk2 1
(k2 + m2

0)

=
i

16π2
lim

Λ→∞

∫ Λ2

0

dx
1

x + m2
0

=
i

16π2
lim

Λ→∞
ln

(
1 + Λ2/m2

0

) →∞ . (2.55)

This is why it is interesting; viz., after all this work, the result is meaning-
less: the one-loop contribution to the quark’s self-energy is divergent!

Such “ultraviolet” divergences, and others which are more complicated,
arise in perturbation theory whenever loops appear.h In a renormalisable
quantum field theory there exists a well-defined set of rules that can be used

hThe others include “infrared” divergences associated with the gluons’ masslessness; e.g.,
consider what would happen in Eq. (2.55) with m0 → 0.



January 27, 2006 12:22 Proceedings Trim Size: 9in x 6in CDRoberts

24

to render perturbation theory sensible. First, however, one must regularise
the theory; i.e., introduce a cutoff or use some other means to make finite
every integral that appears. Then each step in the calculation of an observ-
able is rigorously understood. Renormalisation follows; i.e, the absorption
of divergences, and the redefinition of couplings and masses, so that finally
one arrives at S-matrix amplitudes which are finite and physically mean-
ingful. The regularisation procedure must preserve the Ward-Takahashi
identities (the Slavnov-Taylor identities in QCD) because they are crucial
in proving that a theory can sensibly be renormalised. A theory is called
renormalisable if, and only if, the number of different types of divergent in-
tegral is finite. Then only a finite number of masses and couplings need to
be renormalised; i.e., a priori the theory has only a finite number of unde-
termined parameters that must subsequently be fixed through comparison
with experiments.

Herein we will not explain the procedure. For those interested, Ref. [8] is
a pedagogical introduction and illustration: all the steps for many calcula-
tions are presented and explained. Nevertheless, we present the one-loop re-
sult in the momentum subtraction scheme for the renormalised self-energy:

Σ(2)
R (6p) = Σ(2)

V R(p2) 6p + Σ(2)
SR(p2) ID ; (2.56)

Σ(2)
V R(p2; ζ2) =

α(ζ)
π

ξ(ζ)
1
4

C2(R)
{
−m(ζ)2

(
1
p2

+
1
ζ2

)

+
(

1− m(ζ)4

p4

)
ln

(
1− p2

m(ζ)2

)
−

(
1− m(ζ)4

ζ4

)
ln

(
1 +

ζ2

m(ζ)2

)}
,

(2.57)

Σ(2)
SR(p2; ζ2) = m(ζ)

α(ζ)
π

1
4

C2(R)
{
− [3 + ξ(ζ)]

×
[(

1− m(ζ)2

p2

)
ln

(
1− p2

m(ζ)2

)
−

(
1 +

m(ζ)2

ζ2

)
ln

(
1 +

ζ2

m(ζ)2

)]}
,

(2.58)

where the renormalised quantities depend on the point at which the renor-
malisation was conducted; e.g., α(ζ) is the running coupling and m(ζ) is the
running quark mass, and both are evaluated at the renormalisation scale ζ.
NB. ζ2 is a spacelike point.

QCD is asymptotically free. Hence, at some large spacelike p2 = −ζ2 the
quark propagator is exactly the free propagator except that the bare mass
is replaced by the renormalised mass. At one-loop order, the vector part of
the dressed self-energy is proportional to the running gauge parameter. In
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Landau gauge, that parameter is zero. Hence, in this gauge the vector part
of the renormalised dressed-quark self-energy vanishes at one-loop order in
perturbation theory. The same is true for a charged fermion in QED.

The scalar part of the dressed-quark self-energy is proportional to the
renormalised current-quark mass. This is true at one-loop order, and indeed
at every finite order in perturbation theory. Hence, if the current-quark
mass vanishes, then ΣSR ≡ 0 in perturbation theory. That means if one
starts with a chirally symmetric theory, then in perturbation theory one
also ends up with a chirally symmetric theory: the fermion DSE cannot
generate a gap if there is no bare-mass seed in the first place. Thus DCSB
is impossible in perturbation theory.

3. Hadron Physics

Hadron physics is a key part of the international effort in basic science. The
Thomas Jefferson National Accelerator Facility (JLab) and the Relativistic
Heavy Ion Collider (RHIC) are essential facilities for pursuing long term
goals in a world-wide effort. Progress in this field is gauged via the success-
ful completion of precision measurements of fundamental properties of the
proton, neutron and simple nuclei, for comparison with theoretical calcula-
tions to provide a quantitative understanding of their quark substructure.

The proton and neutron (collectively termed nucleons) are fermions.
They are characterised by two static properties: an electric charge and a
magnetic moment. In Dirac’s theory of pointlike relativistic fermions the
magnetic moment is

µD =
e

2M
. (3.1)

The proton’s magnetic moment was discovered in 1933 by Otto Stern, who
was awarded the Nobel Prize in 1943 for this work.22 He found, however,
that

µp = (1 + 1.79) µD . (3.2)

This was the first indication that the proton is not a point particle. Of
course, we now explain the proton as a bound state of quarks and gluons,
a composition which is seeded and determined by the properties of three
valence quarks. These quarks and gluons are the elementary quanta of
QCD.

Important experiments at JLab measure hadron and nuclear form fac-
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tors via electron scattering. The electron current is known from QED:

jµ(P ′, P ) = ie ūe(P ′) Λµ(Q,P ) ue(P ) , Q = P ′ − P (3.3)

= ie ūe(P ′) γµ(−1) ue(P ) , (3.4)

where ue, ūe are Dirac spinors for a real (on-mass-shell) electron. Equation
(3.4) is the Born approximation result, in which the dressed-electron-photon
vertex is just (−γµ) and where the negative sign merely indicates the sign
of the electron charge. For the nucleons, Eq. (3.3) is written

JN
µ (P ′, P ) = ie ūN (P ′) Λµ(Q,P )uN (P ) (3.5)

= ie ūN (P ′)
(

γµFN
1 (Q2) +

1
2M

σµν Qν FN
2 (Q2)

)
uN (P ) (3.6)

where uN , ūN are on-shell nucleon spinors, and FN
1 (Q2) is the Dirac form

factor and FN
2 (Q2) is the Pauli form factor. The so-called Sachs form

factors are defined via

GE(Q2) = F1(Q2)− Q2

4M2
F2(Q2) , GM (Q2) = F1(Q2) + F2(Q2) . (3.7)

In the Breit frame in the nonrelativistic limit, the three-dimensional
Fourier transform of GE(Q2) provides the electric-charge-density distri-
bution within nucleon, while that of GM (Q2) gives the magnetic-current-
density distribution. This explains their names: GN

E (Q2) is the nucleon’s
electric form factor and GN

M (Q2) is the magnetic form factor. It is apparent
via a comparison between Eqs. (3.4) and (3.6) that F2 ≡ 0 for a point par-
ticle, in which case GE = GM . This means, of course, that if the neutron is
a point particle then it has neither an electric nor a magnetic form factor.

We know of six quarks in the Standard Model of particle physics: u (up),
d (down), s (strange), c (charm), b (bottom) and t (top). The first three
are most important in hadron physics. A central goal of nuclear physics is
to understand the structure and properties of protons and neutrons, and
ultimately atomic nuclei, in terms of the quarks and gluons of QCD. So,
why don’t we just go ahead and do it? One of the answers is confinement :
no quark or gluon has ever been seen in isolation. Another is dynamical
chiral symmetry breaking; e.g., the masses of the u, d quarks in perturbative
QCD provide no explanation for ' 98% of the proton’s mass. One therefore
has to ask, with quarks and gluons are we dealing with the right degrees of
freedom?

The search for patterns in the hadron spectrum adds emphasis to this
question. Let’s consider the proton, for example. It has a mass of approxi-
mately 1GeV. Suppose it to be composed of three (two u and one d) con-
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Figure 4. Proton form factor ratio: µp Gp
E(Q2)/Gp

M (Q2). The data are obtained via
Rosenbluth separation, circles - Ref. [26]; and polarisation transfer, squares - Ref. [27];
diamonds - Ref. [29].

stituent-quarks, as in the eightfold way classification of hadrons into groups
on the basis of their symmetry properties 23. A first guess would place the
mass of these constituents at ∼ 350MeV. In the same approach, the pseu-
doscalar π-meson is composed of a constituent-quark and a constituent-
antiquark. It should therefore have a mass of ∼ 700MeV. However, its true
mass is ∼ 140MeV! On the other hand, the mass of the vector ρ-meson
is correctly estimated in this way: mρ = 770 MeV. Such mismatches are
repeated in the spectrum.

Furthermore, modern high-luminosity experimental facilities, such as
JLab, that employ large momentum transfer reactions are providing re-
markable and intriguing new information on nucleon structure.24,25 For an
example one need only look so far as the discrepancy between the ratio of
electromagnetic proton form factors, µpG

p
E(Q2)/Gp

M (Q2), extracted via the
Rosenbluth separation method 26 and that inferred from polarisation trans-
fer experiments.27,28,29,30,31 This discrepancy is marked for Q2 ∼> 2GeV2

and grows with increasing Q2. Before the JLab data were analysed it was
assumed that µp Gp

E(Q2)/Gp
M (Q2) = 1 based on the seemingly sensible ar-
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gument that the distribution of quark charge and the distribution of quark
current should be the same. However, if the available JLab results turn
out to provide the true measure of this ratio, then we must dramatically
rethink that picture.

An immediate question to ask is where does modern hadron physics
theory stand on this issue? A theoretical understanding might begin with
a calculation of the proton’s Poincaré covariant wave function. (Remem-
ber, the discrepancy is marked at larger momentum transfer; viz., on the
relativistic domain.) One might think that is not a problem. After all, the
wave functions of few electron atoms can be calculated very reliably. How-
ever, there are some key differences. One is that the “potential” between
light-quarks is completely unknown throughout ' 98% of the proton’s
volume. Moreover, as we shall see, a reliable description of the proton’s
wave function will require an accurate treatment of virtual particle effects,
which are a quintessential part of relativistic quantum field theory. In fact,
a computation of the proton’s wave function requires the ab initio solu-
tion of a fully-fledged relativistic quantum field theory, but that is yet far
beyond the capacity of modern physics and mathematics.

3.1. Aspects of QCD

The theory we must explore is quantum chromodynamics (QCD). The ac-
tion is expressed through a local Lagrangian density; viz.,

S[Aa
µ, q, q̄ ] =

∫
d4x

{
q̄(x) [γµDµ + M ] q(x)

+
1
4
F a

µν(x)F a
µν(x) +

1
2ξ

∂µAa
µ(x) ∂νAa

ν(x)
}

, (3.8)

in which the first term of the second line is the chromomagnetic field
strength tensor

F a
µν(x) = ∂µAa

ν(x)− ∂νAa
µ(x) + gfabcAb

µ(x)Ac
ν(x), (3.9)

where {fabc : a, b, c = 1, . . . , 8} are the structure constants of SU(3), and
the second term is a covariant gauge fixing term – almost identical to that
in QED, Eq. (2.1) – with ξ the gauge fixing parameter. The first term in
Eq. (3.8) involves the covariant derivative:

Dµ = ∂µ − ig
λa

2
Aa

µ(x) , (3.10)



January 27, 2006 12:22 Proceedings Trim Size: 9in x 6in CDRoberts

29

where {1
2λa; a = 1, . . . , 8} are the generators of SU(3) for the fundamental

representation; and, in addition, the current-quark mass matrix

M =




mu 0 0 . . .

0 md 0 . . .

0 0 ms . . .
...

...
...


 , (3.11)

wherein we have only indicated the light-quark elements.
Understanding observables that have been and will be measured us-

ing the Continuous Electron Beam Accelerator Facility (CEBAF) at JLab
means knowing all that the quantum field theory based on Eq. (3.8) pre-
dicts. As we have emphasised, perturbation theory is inadequate to that
task because confinement, DCSB, and the formation and structure of bound
states are all essentially nonperturbative phenomena. We will subsequently
provide an overview of a nonperturbative approach to exploring strong QCD
in the continuum.i

QCD is a local, renormalisable, non-Abelian gauge theory, in which each
flavour of quark comes in three colours and there are eight gauge bosons,
called gluons. It is a peculiar feature of non-Abelian gauge theories that the
gauge bosons each carry the gauge charge, colour in this case, and hence
self-interact. This is the key difference between QED, an Abelian gauge the-
ory wherein the photons are neutral, and QCD. The gluon self-interaction
is primarily responsible for the marked difference between the running cou-
pling in QCD and that in QED; namely, that the running coupling in QCD
decreases relatively rapidly with increasing momentum transfer – the the-
ory is asymptotically free, whereas the QED coupling increases very slowly
with growing momentum transfer. (See, e.g., Sec. 1.2 in Ref. [32].)

In Table 1 we return to the hadron spectrum and focus on some of its
features. In a constituent-quark model the JPC = 1−− ρ-meson is obtained
from the 0−+ π-meson by a spin flip, yielding a vector meson state in which
the spins of the constituent-quark and -antiquark are aligned. The same
procedure would yield the 1++ a1-meson from the 0++ σ-meson. Thus the
difference between the masses of ρ and π, and the a1 and σ would appear to
owe to an hyperfine interaction. As the Table asks in row one, why is this

iAlmost all nonperturbative studies in relativistic quantum field theory employ a Eu-
clidean Metric. (Remember the Wick Rotation?!) We have used a Euclidean metric in
writing Eq. (3.8). Appendix A provides some background and describes our Euclidean
conventions.
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Table 1. Comparison between various hadron mass ratios, involving the π, ρ, σ and a1

mesons, the nucleon – N , and the first radial excitations of: the π = π1; and the ρ = ρ1.
The individual masses can be found in Ref. [33].

• m2
ρ

m2
π

= 30 • m2
a1

m2
σ

= 2.1 ? Hyperfine Splitting

• m2
π1

m2
π

= 86 • m2
ρ1

m2
ρ

= 3.5 ? Excitation Energy

• mN

mπ
≈ 7 • mN

mρ
=

5
4
≈ 3

2
? Quark Counting

interaction so much greater in the π channel? Another questions is raised
in row two: why is the radial excitation energy in the pseudoscalar channel
so much greater than that in the vector channel? And row three asks the
question we posed on page 27: why doesn’t constituent-quark counting work
for the π? Additional questions can be posed. The range of an interaction is
inversely proportional to the mass of the boson that mediates the force. The
nucleon-nucleon interaction has a long-range component generated by the
π. The fact that the pion is so much lighter than all other hadrons composed
of u- and d-quarks is crucially important in nuclear physics. If this were
not the case; viz., were the pion roughly as massive as all like-constituted
hadrons, then the domain of stable nuclei would be much reduced. In such
a universe the Coulomb force would prevent the formation of elements like
Fe, and planets such as ours and we, ourselves, would not exist.

3.2. Emergent Phenomena

A true understanding of the visible universe thus requires that we learn
just what it is about QCD which enables the formation of an unnaturally
light pseudoscalar meson from two rather massive constituents. The correct
understanding of hadron observables must explain why the pion is light but
the ρ-meson and the nucleon are heavy. The keys to this puzzle are QCD’s
emergent phenomena: confinement and dynamical chiral symmetry
breaking. Confinement is the feature that no matter how hard one strikes
a hadron, it never breaks apart into quarks and/or gluons that ultimately
reach a detector alone. DCSB is signalled by the very unnatural pattern of
bound state masses, something that we have partly illustrated with Table 1
and the associated discussion. Neither of these phenomena is apparent in
QCD’s action and yet they are the dominant determining characteristics of
real-world QCD. Attaining an understanding of these phenomena is one of
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the greatest intellectual challenges in physics.
In order to come to grips with DCSB it is first necessary to know the

meaning of chiral symmetry. It is a fact that, at the Lagrangian level, local
gauge theories with massless fermions posses chiral symmetry. Consider
then helicity, which may be viewed as the projection of an object’s spin,
~j, onto its direction of motion, ~p ; viz., λ ∝ ~j · ~p. For massless particles,
helicity is a Lorentz invariant spin observable. Plainly, it is either parallel
or anti-parallel to the direction of motion.

In the Dirac basis, γ5 is the chirality operator and we may represent a
positive helicity (right-handed) fermion via

q+(x) =
1
2

(ID + γ5) q(x) =: P+ q(x) (3.12)

and a left-handed fermion through

q−(x) =
1
2

(ID − γ5) q(x) =: P− q(x) . (3.13)

A global chiral transformation is enacted byj

q(x) → q(x)′ = eiγ5θq(x) , q̄(x) → q̄(x)′ = q̄(x) eiγ5θ, (3.14)

and with the choice θ = π/2 it is evident that this transformation maps
q+ → q+ and q− → −q−. Hence, a theory that is invariant under chi-
ral transformations can only contain interactions that are insensitive to a
particle’s helicity.

Consider now a composite local pseudoscalar: q̄(x)iγ5q(x). According
to Eq. (3.14), a chiral rotation through an angle θ = π/4 effects the trans-
formation

q̄(x)iγ5q(x) → −q̄(x)ID q(x) ; (3.15)

i.e., it turns a pseudoscalar into a scalar. Thus the spectrum of a the-
ory invariant under chiral transformations should exhibit degenerate parity
doublets. Is such a prediction borne out in the hadron spectrum? Let’s
check:33

N(JP = 1
2

+
,m = 938) cf. N(JP = 1

2

−
, m = 1535)

π(0−, 140) cf. σ(0+, 600)
ρ(1−, 770) cf. a1(1+, 1260)

(3.16)

jFor this illustrative purpose it is not necessary to consider complications that arise in
connection with U(1) chiral anomalies, which appear via quantisation.
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Quite clearly, it is not: the difference in masses between parity partners is
very large, which forces a conclusion that chiral symmetry is badly broken.
Since the current-quark mass term is the only piece of the QCD Lagrangian
that breaks chiral symmetry, this appears to suggest that the quarks are
quite massive. The conundrum reappears again: how can the pion be so
light if the quarks are so heavy?

The extraordinary phenomena of confinement and DCSB can be iden-
tified with properties of dressed-quark and -gluon propagators. These
two-point functions describe the in-medium propagation characteristics of
QCD’s elementary excitations. Here the medium is QCD’s ground state;
viz., the interacting vacuum.

The propagation of a photon through a dense electron gas is a well-
known example from solid state physics of the effect that a medium can have
on particle propagation. Such a photon acquires a Debye mass: m2

D ∝ k2
F ,

where kF is the Fermi momentum of the electron gas, so that the photon
propagator is modified:

1
q2
→ 1

q2 + m2
D

. (3.17)

The appearance of this dynamically generated mass leads to a screening of
electromagnetic interactions within the gas; namely, interactions are mate-
rial only between particles separated by r ∼< rD := 1/mD.

Similar but more dramatic changes occur in the quark and gluon prop-
agators. They acquire momentum-dependent mass functions, an outcome
which fundamentally alters the spectral properties of these elementary ex-
citations.

A mass term in the QCD Lagrangian explicitly breaks chiral symmetry.
The effect can be discussed in terms of the quark propagator. It is sufficient
to consider that of a noninteracting fermion of mass m:

S(p) =
−iγ · p + m

p2 + m2
. (3.18)

On this propagator, the chiral rotation of Eq. (3.14) is effected through

S(p) → eiγ5θS(p)eiγ5θ =
−iγ · p
p2 + m2

+ e2iγ5θ m

p2 + m2
. (3.19)

It is therefore clear that the symmetry violation is proportional to the
current-quark mass and hence that the theory is chirally symmetric for
m = 0. Another way of looking at this is to consider the fermion condensate:

〈q̄q〉 = − tr
∫

d4p

(2π)4
S(p) ∝ −

∫
d4p

(2π)4
m

p2 + m2
. (3.20)
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Figure 5. A rotationally invariant but unstable extremum of the Hamiltonian obtained
with the potential in Eq. (3.21). (Adapted from Ref. [32].)

This is a quantity that can rigorously be defined in quantum field the-
ory 34 and whose strength measures the violation of chiral symmetry. It is
a standard order parameter for chiral symmetry breaking, playing a role
analogous to that of the magnetisation in a ferromagnet.

This connects immediately to dynamical symmetry breaking. Consider
a point-particle in the rotationally invariant potential

V (σ, π) = (σ2 + π2 − 1)2, (3.21)

which is illustrated in Fig. 5. The figure depicts a state wherein the particle
is stationary at an extremum of the action. That state is rotationally
invariant but unstable. On the other hand, in the ground state of the
system the particle is stationary at any point (σ, π) in the trough of the
potential, for which σ2+π2 = 1. There are infinitely many (an uncountable
infinity of) such vacua, |θ〉, which are related, one to another, by rotations in
the (σ, π)-plane. The vacua are degenerate but not rotationally invariant
and hence, in general, 〈θ|σ|θ〉 6= 0 6= 〈θ|π|θ〉. In this case the rotational
invariance of the Hamiltonian is not exhibited in any single ground state:
the symmetry is dynamically broken with interactions being responsible for
〈θ|σ|θ〉 6= 0 6= 〈θ|π|θ〉.

The connection between dynamics and symmetries is now in plain view.
The elementary excitations of QCD’s action are absent from the strong
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interaction spectrum: neither a quark nor a gluon ever reaches a detec-
tor alone. This is the physics of confinement. Chirality is the projection
of a particle’s spin onto its direction of motion. It is a Lorentz invariant
for massless quarks. To classical QCD interactions, left-handed and right-
handed quarks are indistinguishable. This symmetry has implications for
the spectrum that do not appear to be realised. That is DCSB. Our chal-
lenge is to understand the emergence of confinement and DCSB from the
QCD Lagrangian, and therefrom describe their impact on the strong in-
teraction spectrum and hadron dynamics. These two phenomena need not
be separate. They are likely both manifestations of the same mechanism.
That mechanism must be elucidated. It is certainly nonperturbative.

4. Nonperturbative Tool in the Continuum

In Sec. 2 we introduced the Dyson-Schwinger equations (DSEs). They can
provide a nonperturbative tool for the study of continuum strong QCD.
At the simplest level the DSEs provide a generating tool for perturbation
theory. Since QCD is asymptotically free, that means that any model-
dependence in the application of these methods can be restricted to the
infrared or, equivalently, the long-range domain. In this mode, the DSEs
provide a means by which to use nonperturbative strong interaction phe-
nomena to map out, e.g., the behaviour at long range of the interaction
between light-quarks. A nonperturbative solution of the DSEs enables the
study of: hadrons as composites of dressed-quarks and -gluons; the phe-
nomena of confinement and DCSB; and therefrom an articulation of any
connection between them. The solutions of the DSEs are Schwinger func-
tions and because all cross-sections can be constructed from such n-point
functions the DSEs can be used to make predictions for real-world exper-
iments. One of the merits in this is that any assumptions employed, or
guesses made, can be tested, verified and improved, or rejected in favour of
more promising alternatives. The modern application of these methods is
described in Refs. [35,36,37,38].

Let’s return to the dressed-quark propagator, which is given by the
solution of QCD’s gap equation. In Minkowski space that is Eq. (2.42), but
in Euclidean space the gap equation takes the form:

S(p)−1 = iγ · p + m + Σ(p) , (4.1)

Σ(p) =
∫ Λ d4`

(2π)4
g2 Dµν(p− `) γµ

λa

2
1

iγ · `A(`2) + B(`2)
Γa

ν(`, p). (4.2)

At zero temperature and chemical potential the most general Poincaré co-
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variant solution of this gap equation involves two scalar functions. There
are three common expressions:

S(p) =
1

iγ · pA(p2) + B(p2)
=

Z(p2)
iγ · p + M(p2)

= −iγ · p σV (p2) + σS(p2) ,

(4.3)
which are equivalent to Eq. (2.56). In the second form, Z(p2) is called
the wave-function renormalisation and M(p2) is the dressed-quark mass
function.

A weak coupling expansion of the DSEs produces every diagram in
perturbation theory, and we reproduced the one-loop result in Eq. (2.58).
The general result in perturbation theory can be summarised via

Bpert(p2) = m

(
1− α

π
ln

[
p2

m2

]
+ . . .

)
, (4.4)

where the ellipsis denotes terms of higher order in α that involve
(ln[p2/m2])2 and (ln ln[p2/m2]), etc. However, at arbitrarily large finite
order it is always true that

lim
m→0

Bpert(p2) ≡ 0. (4.5)

This restates the remark made after Eq. (2.58) on page 25. Our question
is whether this conclusion can ever be avoided; namely, are there circum-
stances under which it is possible to obtain a nonzero dressed-quark mass
function in the chiral limit; viz., for m → 0?

4.1. Dynamical Mass Generation

To begin the search for an answer, consider Eqs. (4.1), (4.2) with the follow-
ing model forms for the dressed-gluon propagator and quark-gluon vertex:k

g2Dµν(p− `) = δµν
1

m2
G

θ(Λ2 − `2) , (4.6)

Γa
ν(k, p) = γµ

λa

2
, (4.7)

wherein mG is some gluon mass-scale and Λ serves as a cutoff. The model
thus obtained is not renormalisable so that the regularisation scale Λ, upon

kThe form for the gluon two-point function implements a four-dimensional-cutoff version
of the Nambu–Jona-Lasinio model, which has long been used to model QCD at low
energies, e.g., Refs. [39,40,41].
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which all calculated quantities depend, plays a dynamical role. In this case
the gap equation is

iγ · pA(p2) + B(p2) = iγ · p + m0

+
4
3

1
m2

G

∫
d4`

(2π)4
θ(Λ2 − `2) γµ

−iγ · `A(`2) + B(`2)
`2A2(`2) + B2(`2)

γµ , (4.8)

wherein we employ m0 to represent the mass that explicitly breaks chiral
symmetry.

If one multiplies Eq. (4.8) by (−iγ ·p) and subsequently evaluates a trace
over spinor (Dirac) indices, then one finds

p2 A(p2) = p2 +
8
3

1
m2

G

∫
d4`

(2π)4
θ(Λ2 − `2) p · ` A(`2)

`2A2(`2) + B2(`2)
. (4.9)

It is straightforward to show that
∫

d4`p · ` = 0; i.e., the angular integral
in Eq. (4.9) vanishes, from which it follows that

A(p2) ≡ 1 . (4.10)

This owes to the fact that models of the Nambu–Jona-Lasinio type are
defined via a four-fermion contact interaction in configuration space, which
entails momentum-independence of the interaction and therefore also of the
gap equation’s solution in momentum space.

If, on the other hand, one multiplies Eq. (4.8) by ID, uses Eq. (4.10) and
subsequently evaluates a trace over Dirac indices, then

B(p2) = m0 +
16
3

1
m2

G

∫
d4`

(2π)4
θ(Λ2 − `2)

B(`2)
`2 + B2(`2)

. (4.11)

Since the integrand here is p2-independent then a solution at one value of
p2 must be the solution at all values; viz., any nonzero solution must be of
the form

B(p2) = constant = M . (4.12)

Using this result, Eq. (4.11) becomes

M = m0 + M
1

3π2

1
m2

G

C(M2,Λ2) , (4.13)

C(M2,Λ2) = Λ2 −M2 ln
[
1 + Λ2/M2

]
. (4.14)

Recall now that Λ defines the mass-scale in a nonrenormalisable model.
Hence we can set Λ ≡ 1 and hereafter merely interpret all other mass-scales
as being expressed in units of Λ, whereupon the gap equation becomes

M = m0 + M
1

3π2

1
m2

G

C(M2, 1) . (4.15)
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Let us consider Eq. (4.15) in the chiral limit: m0 = 0,

M = M
1

3π2

1
m2

G

C(M2, 1) . (4.16)

One solution is obviously M ≡ 0. This is the result that connects smoothly
with perturbation theory: one starts with no mass, and no mass is gener-
ated. In this instance the theory is said to realise chiral symmetry in the
Wigner-Weyl mode.

Suppose, however, that M 6= 0 in Eq. (4.16). That is possible if, and
only if, the following equation has a solution:

1 =
1

3π2

1
m2

G

C(M2, 1) . (4.17)

It is plain from Eq. (4.14) that C(M2, 1) is a monotonically decreasing
function of M whose maximum value occurs at M = 0: C(0, 1) = 1.
Consequently, ∃M 6= 0 solution if, and only if,

1
3π2

1
m2

G

> 1 . (4.18)

It is thus apparent that there is always a domain of values for the gluon
mass-scale, mG, for which a nontrivial solution of the gap equation can be
found. If we suppose Λ ∼ 1GeV, which is a scale that is typical of hadron
physics, then ∃M 6= 0 solution for

m2
G <

Λ2

3π2
' (0.2 GeV)2. (4.19)

This result, derived in a straightforward manner, is astonishing! It
reveals the power of a nonperturbative solution to nonlinear equations. Al-
though we started with a model of massless fermions, the interaction alone
has provided the fermions with mass. This is dynamical chiral symmetry
breaking; namely, the generation of mass from nothing. When this happens
chiral symmetry is said to be realised in the Nambu-Goldstone mode. It
is clear from Eqs. (4.18), (4.19) that DCSB is guaranteed to be possible so
long as the interaction exceeds a particular minimal strength.

In Fig. 6 we depict the mG-dependence of the nontrivial self-consistent
solution of Eq. (4.15) obtained with a current-quark mass m = 0.01 (mea-
sured in units of Λ). The vertical line marks

mcr
G =

1√
3 π

; (4.20)

namely, the value of mG above which a DCSB solution of Eq. (4.16) is im-
possible. Evidently, for mG > mcr

G , M(mG) ≈ m0 and the self-consistent



January 27, 2006 12:22 Proceedings Trim Size: 9in x 6in CDRoberts

38

0.1 0.2 0.3 0.4 0.5 0.6
mG

0

0.1

0.2

0.3

0.4

M
(m

G
)

Complete Solution
mG= 0.186

m0= 0.01

Figure 6. With a bare mass m = 0.01, the mass gap obtained using the interaction
specified by Eqs. (4.6), (4.7) – solid curve with circles. (All dimensioned quantities
measured in units of Λ, the regularisation scale.)

solution is well approximated by the perturbative result. However, a tran-
sition takes place for mG ' mcr

G , and for mG < mcr
G the dynamical mass

is much greater than the bare mass, with M increasing rapidly as mG is
reduced and the effective strength of the interaction is thereby increased.

4.2. Dynamical Mass and Confinement

One aspect of quark confinement is the absence from the strong interac-
tion spectrum of free-particle-like quarks. What does the model of Sec. 4.1
have to contribute in this connection? Well, whether one works within
the domain of the model on which DCSB takes place, or not, the quark
propagator always has the form

SNJL(p) =
1

iγ · p [A(p2) = 1] + [B(p2) = M ]
=
−iγ · p + M

p2 + M2
, (4.21)

where M is constant. This expression has a pole at p2 +M2 = 0 and thus is
always effectively the propagator for a noninteracting fermion with mass M .
Hence, while it is generally true that models of the Nambu–Jona-Lasinio
type support DCSB, they do not exhibit confinement.
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Consider an alternative,42 defined via Eq. (4.7) and

g2Dµν(k) = (2π)4 Ǧ δ4(k)
[
δµν − kµkν

k2

]
. (4.22)

Here Ǧ defines the model’s mass-scale and the interaction is a δ-function
in momentum space, which may be compared with models of the Nambu–
Jona-Lasinio type wherein the interaction is instead a δ-function in config-
uration space. In this instance the gap equation is

iγ · pA(p2) + B(p2) = iγ · p + m0 + Ǧ γµ
−iγ · pA(p2) + B(p2)
p2A2(p2) + B2(p2)

γµ , (4.23)

which yields the following coupled nonlinear algebraic equations:

A(p2) = 1 + 2
A(p2)

p2A2(p2) + B2(p2)
, (4.24)

B(p2) = m0 + 4
B(p2)

p2A2(p2) + B2(p2)
. (4.25)

Equation (4.23) yields an ultraviolet finite model and hence there is no
regularisation mass-scale. In this instance we can therefore refer all dimen-
sioned quantities to the model’s mass-scale and set Ǧ = 1.

Consider the chiral limit of Eq. (4.25):

B(p2) = 4
B(p2)

p2A2(p2) + B2(p2)
. (4.26)

Obviously, like Eq. (4.16), this equation admits a trivial solution B(p2) ≡ 0
that is smoothly connected to the perturbative result, but is there another?
The existence of a B 6≡ 0 solution; i.e., a solution that dynamically breaks
chiral symmetry, requires (in units of Ǧ)

p2A2(p2) + B2(p2) = 4 . (4.27)

Suppose this identity to be satisfied, then its substitution into Eq. (4.24)
gives

A(p2)− 1 =
1
2

A(p2) ⇒ A(p2) ≡ 2 , (4.28)

which in turn entails

B(p2) = 2
√

1− p2 . (4.29)

A complete chiral-limit solution is composed subject to the physical
requirement that the quark self-energy is real on the spacelike momentum
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domain, and hence

A(p2) =

{
2 ; p2 ≤ 1
1
2

(
1 +

√
1 + 8/p2

)
; p2 > 1

(4.30)

B(p2) =
{√

1− p2 ; p2 ≤ 1
0 ; p2 > 1 .

(4.31)

In this case both scalar functions characterising the dressed-quark propa-
gator differ significantly from their free-particle forms and are momentum
dependent. (As we will see, this is also true in QCD.) It is noteworthy that
the magnitude of the model’s mass-scale plays no role in the appearance of
this DCSB solution of the gap equation. Thus, in models of the Munczek-
Nemirovsky type, the interaction is always strong enough to support the
generation of mass from nothing.

The DCSB solution of Eqs. (4.30), (4.31) is defined and continuous for all
p2, including timelike momenta, p2 < 0. It gives a dressed-quark propagator
whose denominator

p2 A2(p2) + B2(p2) > 0 , ∀ p2 . (4.32)

This is a novel and remarkable result, which means that the propagator does
not exhibit any free-particle-like poles! This feature can be interpreted as
a realisation of quark confinement.

The Munczek-Nemirovosky interaction has taken a massless quark and
turned it into something which at timelike momenta bears little resemblance
to the perturbative quark. It does that for all nonzero values of the model’s
mass-scale. In this model one exemplifies an intriguing possibility that all
models with quark-confinement necessarily exhibit DCSB. It is obvious from
Sec. 4.1 that the converse is certainly not true.

In the chirally asymmetric case the gap equation yields

A(p2) =
2 B(p2)

m + B(p2)
, (4.33)

B(p2) = m0 +
4 [m + B(p2)]2

B(p2)([m + B(p2)]2 + 4p2)
. (4.34)

The second of these is a quartic equation for B(p2). It can be solved
algebraically. There are four solutions, obtained in closed form, only one
of which possesses the physically sensible ultraviolet spacelike behaviour:
B(p2) → m as p2 →∞. The physical solution is depicted in Fig. 7. At
large spacelike momenta, M(s = p2) → m+

0 and a perturbative analysis is
reliable. That is never the case for s ∼< 1 (in units of Ǧ), on which domain



January 27, 2006 12:22 Proceedings Trim Size: 9in x 6in CDRoberts

41

-2 -1 0 1 2 3 4 5
s

0

0.5

1

1.5

M
(s

)

M(s) Munczek-Nemirovsky
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Figure 7. With a bare mass m0 = 0.015, the dressed-quark mass function M(s = p2)
obtained using the interaction specified by Eqs. (4.7), (4.22) – solid curve. A free-particle-
like mass-pole would occur at that value of s for which the solid and green curves inter-
sect. As the figure suggests, this never happens in models of the Munczek-Nemirovsky
type. (All dimensioned quantities measured in units of Ǧ, the model’s mass-scale.)

M(s) À m0 and the difference M(s)− |s| is always nonzero, a feature that
is consistent with confinement.

We have illustrated two variations on the theme of dynamical mass gen-
eration via the gap equation. A general class of models for asymptotically
free theories may be discussed in terms of an effective interaction

g2D(Q2) = 4π
a(Q2)
Q2

, (4.35)

where a(Q2) is such that g2D(Q2) evolves according to QCD’s renormalisa-
tion group in the ultraviolet. This situation is depicted in Fig. 8. The types
of effective interaction fall into two classes. In those for which a(0) < 1, the
only solution of the gap equation in the chiral limit is M(s) ≡ 0. Whereas,
when a(0) ≥ 1, M(s) 6= 0 is possible in the chiral limit and, indeed, corre-
sponds to the energetically favoured ground state.

It is the right point to recall the conundrums described in Sec. 3. We
have seen how confinement and DCSB can emerge in the nonperturbative
solution of a theory’s Dyson-Schwinger equations. Therefore theories whose
classical Lagrangian possesses no mass-scale can, in fact, via DCSB, behave
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Figure 8. Two classes of effective interaction in the gap equation. A theory will exhibit
dynamical chiral symmetry breaking if, and only if, a(Q = 0) ≥ 1. Here the ultraviolet
behaviour of the interactions is constrained to be that of QCD.

like theories with large quark masses and can also exhibit confinement. This
understanding is a step toward a resolution of the riddles posed by strong
interaction physics.

5. Meson Properties

5.1. Coloured Two- and Three-point Schwinger Functions

We now begin a consideration of QCD proper. The preceding discussion
leads to the key question: what is the behaviour of the kernel of QCD’s gap
equation? That kernel is constituted by the contraction of the dressed-gluon
propagator and the dressed-quark-gluon vertex:

Dµν(p− q) Γν(q) . (5.1)

In Landau gauge the two-point gluon Schwinger function can be ex-
pressed

Dµν(p) =
(

δµν − pµpν

p2

)
F (p2)

p2
, (5.2)

where F (p2) involves the vacuum polarisation discussed in Sec. 2.1. The
modern DSE perspective on F (p2) is reviewed in Ref. [37] and the predic-
tions described therein were verified in contemporary simulations of lattice-
regularised QCD.43 The agreement is illustrated in Fig. 9.
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Figure 9. Solid curve – F (p2) in Eq. (5.2) obtained through the solution of one partic-
ular truncation of the coupled ghost-gluon-quark DSEs with Nf = 3 flavours of massless
quark. Dashed curve – DSE solution with the same truncation but omitting coupling
to the quark DSE. Open circles – quenched lattice-QCD results. NB. There is sufficient
lattice data at intermediate spacelike p2 for the open circles to appear as a grey band.
Within the lattice errors, the quenched DSE and lattice results are indistinguishable.
(Adapted from Ref. [44].)

The DSE result depicted in Fig. 9 describes a gluon two-point function
that is suppressed at small p2; i.e., in the infrared. This deviation from ex-
pectations based on perturbation theory becomes apparent at p2 ' 1 GeV2.
A mass-scale of this magnitude has long been anticipated as characteris-
tic of nonperturbative gauge-sector dynamics. Its origin is fundamentally
the same as that of ΛQCD, which appears in perturbation theory. This
phenomenon whereby the value of a dimensionless quantity becomes es-
sentially linked to a dynamically generated mass-scale is sometimes called
dimensional transmutation.

The dressed-quark two-point function has the form presented in
Eq. (4.3), and we know that for a free particle Z(p2) = 1 and M(p2) =
mcurrent. On the other hand, the behaviour of these functions in QCD is a
longstanding prediction of DSE studies,14 and could have been anticipated
from Refs. [45,46]. These DSE predictions, too, are confirmed in numerical
simulations of lattice-QCD,47,48 and the conditions have been explored un-
der which pointwise agreement between DSE results and lattice simulations
may be obtained.44,49,50. This agreement is illustrated in Fig. 10, wherein
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Figure 10. Left Panel – Dashed-curve: gap equation’s solution in the chiral limit; solid
curves: solutions for M(p2) obtained using the current-quark masses in Eq. (5.3). Data,
upper three sets: lattice results for M(p2) in GeV at am values in Eq. (5.3); lower points
(boxes): linear extrapolation of these results to am = 0.47 Right Panel – Dashed curve,
Z(p2), and solid curve, M(p2) calculated from the gap equation with m(ζ) = 55MeV.
Data, quenched lattice-QCD results for M(p2) and Z(p2) obtained with am = 0.036.47

(Adapted from Ref. [49].)

the nonzero current-quark masses are

amlattice 0.018 0.036 0.072
m(ζ) (GeV) 0.030 0.055 0.110

. (5.3)

The top row here lists the values used in the quenched-QCD lattice simu-
lations, with a the lattice spacing so that am is dimensionless,47 and the
second row provides the matched current-quark masses used in the DSE
study, with the renormalisation scale ζ = 19 GeV.49

Figure 10 confirms that DCSB is a reality in QCD. At ultraviolet mo-
menta the magnitude of the mass function is determined by the current-
quark mass. In the infrared, however, for light-quarks, M(p2) is orders-of-
magnitude larger. The DSE analysis alone, and its correlation of lattice
data, indicates that the mass function is nonzero and retains its magnitude
in the chiral limit.

What about confinement? We have already mentioned that this phe-
nomenon might be expressed in the analyticity properties of the dressed
propagators. In fact it is sufficient for confinement that dressed propaga-
tors for coloured excitations not possess a Lehmann representation, since
this is associated with a violation of reflection positivity. An excitation
connected with a propagator that violates reflection positivity cannot ap-
pear in the Hilbert space of physical states; viz., it won’t propagate to a
detector. These notions may be traced from Refs. [51, 52, 53, 54] and are
described in Refs. [14, 35, 36, 37]. (See also, e.g., the discussion of the re-
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construction theorem in Ref. [55].) Any Schwinger function that exhibits an
inflexion point cannot be expressed through a Lehmann representation. An
inspection of the DSE and lattice results for F (p2)/p2 and σS(p2) suggests
strongly that the dressed-gluon and -quark propagators display an inflexion
point. Moreover, in QCD there are DSE studies which suggest that quark
confinement and DCSB both owe to the same dynamical mechanism,56,57

and therefore that one does not appear without the other.
In connection with Fig. 8 in Sec. 4.2 we described a class of effective

interaction in the gap equation that can generate DCSB. The dressed-gluon
propagator obtained from F (p2) in Fig. 9, combined with Eq. (4.7), does
not yield an interaction that is a member of that class.36,58 How then is it
possible that Ref. [49] unified the gluon and quark two-point functions? The
problem was anticipated in Ref. [58] and an answer suggested; namely, the
dressed-quark-gluon vertex must exhibit an enhancement in the infrared.
This is precisely the means employed in Ref. [49]. The exact nature of
the enhancement and its origin in QCD is the subject of contemporary
research.50,59,60

5.2. Colour-singlet Schwinger Functions: Bound States

At this point it is apparent that a semi-quantitatively reliable picture of
the key propagators and vertices is established in QCD. What about bound
states? Without them, of course, a direct comparison with experiment is
impossible. Bound states appear as pole contributions to colour-singlet
Schwinger functions and this observation may be viewed as the origin of
the Bethe-Salpeter equation. The Bethe-Salpeter equation (BSE) has an
history that predates QCD but we will not go into that. It can be traced,
e.g., from Ref. [7], Chap. 10.

The DSE for the dressed-quark-gluon vertex can be viewed as a BSE, as
can that for the dressed-quark-photon vertex. The latter is a colour singlet
vertex and its lowest mass pole-contribution is the ρ-meson.61 That fact
underlies the success of vector meson dominance phenomenology.

The axial-vector vertex is of primary interest to hadron physics. It may
be obtained as the solution of the inhomogeneous Bethe-Salpeter equation

[Γ5µ(k; P )]tu = Z2 [γ5γµ]tu +
∫ Λ

q

[S(q+)Γ5µ(q;P )S(q−)]srK
rs
tu (q, k; P ) ,

(5.4)
where q± = q ± P/2 and the colour-, Dirac- and flavour-matrix struc-
ture of the elements in the equation is denoted by the indices r, s, t, u.
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In Eq. (5.4), K(q, k;P ) is the fully-amputated quark-antiquark scattering
kernel. It is one-particle-irreducible and hence, by definition, does not con-
tain quark-antiquark to single gauge-boson annihilation diagrams, such as
would describe the leptonic decay of the pion, nor diagrams that become
disconnected by cutting one quark and one antiquark line. If one knows the
form of K then one completely understands the nature of the interaction
between quarks in QCD.

In addition to K, the kernel of Eq. (5.4) also contains the dressed-quark
propagator. That is obtained from the gap equation, which in QCD is
written

S(p)−1 = Z2 (iγ ·p+mbare)+ Z1

∫ Λ

q

g2Dµν(p−q)
λa

2
γµS(q)Γa

ν(q; p) . (5.5)

We have seen this equation before but here it is written properly ;
viz., Eq. (5.5) is the renormalised DSE for the dressed-quark propa-
gator. Therein Dµν(k) is the renormalised dressed-gluon propagator,
Γa

ν(q; p) is the renormalised dressed-quark-gluon vertex, mbare is the Λ-
dependent current-quark bare mass that appears in the QCD Lagrangian
and

∫ Λ

q
:=

∫ Λ
d4q/(2π)4 represents a Poincaré-invariant regularisation of

the integral, with Λ the regularisation mass-scale. In addition, Z1(ζ2,Λ2)
and Z2(ζ2, Λ2) are the quark-gluon-vertex and quark wave function renor-
malisation constants, which depend on the renormalisation point, ζ, and
the regularisation mass-scale. The solution of Eq. (5.5) is obtained subject
to the renormalisation condition

S(p)−1
∣∣
p2=ζ2 = iγ · p + m(ζ) , (5.6)

where m(ζ) is the renormalised mass:

Z2(ζ2, Λ2) mbare(Λ) = Z4(ζ2,Λ2)m(ζ) , (5.7)

with Z4 the Lagrangian mass renormalisation constant. In QCD the chiral
limit is unambiguously defined by

Z2(ζ2,Λ2)mbare(Λ) ≡ 0 , ∀Λ À ζ , (5.8)

which is equivalent to stating that the renormalisation-point-invariant
current-quark mass vanishes; i.e., m̂ = 0.

5.2.1. Model-independent results

We have made much of chiral symmetry in the preceding discussion. In
quantum field theory, chiral symmetry and the pattern by which it is broken
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is expressed via the chiral Ward-Takahashi identity:

PµΓH
5µ(k; P ) = Š(k+)−1iγ5

TH

2
+iγ5

TH

2
Š(k−)−1−i {M ζ ,ΓH

5 (k; P )}, (5.9)

where the pseudoscalar vertex is given by

[
ΓH

5 (k; P )
]
tu

= Z4

[
γ5

TH

2

]

tu

+
∫ Λ

q

[
χH

5 (q; P )
]
sr

Krs
tu (q, k; P ) , (5.10)

with χH
5 (q; P ) = Š(q+)ΓH

5 (q; P )Š(q−), Š = diag[Su, Sd, Ss, . . .] and M ζ =
diag[mu(ζ),md(ζ),ms(ζ), . . .].

We have written Eqs. (5.9), (5.10) for the case of a flavour-nonsinglet
vertex in a theory with Nf quark flavours. The matrices TH are constructed
from the generators of SU(Nf ) with, e.g., Tπ+

= 1
2 (λ1 + iλ2) providing for

the flavour content of a positively charged pion. Writing the equations
in this manner is straightforward. However, a unified description of light-
and heavy-quark systems is not. Truncations and approximations that are
reliable in one sector need not be valid in the other.

The axial-vector Ward-Takahashi identity relates the solution of a BSE
to that of the gap equation. If the identity is always to be satisfied and
in a model-independent manner, as it must be in order to preserve an
essential symmetry of the strong interaction and its breaking pattern, then
the kernels of the gap and Bethe-Salpeter equations must be intimately
related. Any truncation or approximation of these equations must preserve
that relation. This is an extremely tight constraint. Perturbation theory
is one systematic truncation that, order by order, guarantees Eq. (5.9).
However, as we have emphasised, perturbation theory is inadequate in the
face of QCD’s emergent phenomena. Something else is needed.

Happily, at least one systematic, nonperturbative and symmetry pre-
serving truncation of the DSEs exists.60,62,63 This makes it possible to prove
Goldstone’s theorem in QCD.64 Namely, when chiral symmetry is dynam-
ically broken: the axial-vector vertex, Eq. (5.4), is dominated by the pion
pole for (P 2 ∼ 0) and the homogeneous, isovector, pseudoscalar BSE has
a massless (P 2 = 0) solution. The converse is also true, so that DCSB is
a sufficient and necessary condition for the appearance of a massless pseu-
doscalar bound state of dynamically-massive constituents which dominates
the axial-vector vertex for infrared total momenta.

Furthermore, from the axial-vector Ward-Takahashi identity and the ex-
istence of a systematic, nonperturbative symmetry-preserving truncation,
one can prove the following identity involving the mass-squared of a pseu-
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doscalar meson:64

fH m2
H = ρH(ζ)M ζ

H , (5.11)

where M ζ
H = mq1(ζ) + mq2(ζ) is the sum of the current-quark masses of

the meson’s constituents;

fH Pµ = Z2tr
∫ Λ

q

1

2
(TH)T γ5γµŠ(q+) ΓH(q; P ) Š(q−) , (5.12)

where (·)T indicates matrix transpose, and

ρH(ζ) = Z4 tr
∫ Λ

q

1

2
(TH)T γ5Š(q+) ΓH(q;P ) Š(q−) . (5.13)

The renormalisation constants in Eqs. (5.12), (5.13) play a pivotal role.
Indeed, the expressions would be meaningless without them. They serve
to guarantee that the quantities described are gauge invariant and finite as
the regularisation scale is removed to infinity, which is the final step in any
calculation. Moreover, Z2 in Eq. (5.12) and Z4 in Eq. (5.13) ensure that
both fH and the product ρH(ζ)M ζ

H are renormalisation point independent,
which is an absolute necessity for any observable quantity.

Taking note that in a Poincaré invariant theory a pseudoscalar meson
Bethe-Salpeter amplitude assumes the form

iΓj
H(k; P ) = THγ5 [iEH(k;P ) + γ · P FH(k; P )

+ γ · k k · P GH(k; P ) + σµν kµPν HH(k; P )] , (5.14)

then, in the chiral limit, one can also prove that

fHEH(k; 0) = B(k2) , (5.15)

FR(k; 0) + 2 fHFH(k; 0) = A(k2) , (5.16)

GR(k; 0) + 2 fHGH(k; 0) = 2A′(k2) , (5.17)

HR(k; 0) + 2 fHHH(k; 0) = 0 . (5.18)

The functions FR, GR, HR are associated with terms in the axial-vector
vertex that are regular in the neighbourhood of P 2 + m2

H = 0 and do not
vanish at Pµ = 0. These four identities are quark-level Goldberger-Treiman
relations for the pion. They are exact in QCD and are a pointwise expres-
sion of Goldstone’s theorem. These identities relate the pseudoscalar meson
Bethe-Salpeter amplitude directly to the dressed-quark propagator. Equa-
tion (5.15) explains why DCSB and the appearance of a Goldstone mode
are so intimately connected, and Eqs. (5.16)-(5.18) entail that in general
a pseudoscalar meson Bethe-Salpeter amplitude has what might be called
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pseudovector components; namely: FH , GH , HH . It is the latter which, in
a covariant treatment, guarantee that the electromagnetic pion form factor
behaves as 1/Q2 at large spacelike momentum transfer.65

Equation (5.11) and its corollaries are of fundamental importance
in QCD. To exemplify let’s focus first on the chiral limit behaviour of
Eq. (5.13) whereat, using Eqs. (5.14), (5.15)-(5.18), one finds readily

f0
H ρ0

H(ζ) = Z4(ζ, Λ) Nc trD
∫ Λ

q

Sm̂=0(q) = −〈q̄q〉0ζ , (5.19)

where f0
H is the chiral limit value from Eq. (5.12), which is nonzero when

chiral symmetry is dynamically broken. Equation (5.19) is unique as the
expression for the chiral limit vacuum quark condensate, and is the true
definition of the order parameter first described in Eq. (3.20). It thus follows
from Eqs. (5.11), (5.19) that in the neighbourhood of the chiral limit

(f0
H)2 m2

H = −M ζ
H 〈q̄q〉0ζ + O(M̂2) . (5.20)

Hence what is commonly known as the Gell-Mann–Oakes–Renner relation
is a corollary of Eq. (5.11).

Let’s now consider another extreme; viz., when one of the constituents
is a heavy quark, a domain on which Eq. (5.11) is equally valid. In this case
Eq. (5.12) yields the model-independent result66

fH ∝ 1√
MH

; (5.21)

i.e., it reproduces a well-known consequence of heavy-quark symmetry.67 A
similar analysis of Eq. (5.13) gives a new result68,69

− 〈q̄q〉Hζ = constant + O

(
1

mH

)
for

1
mH

∼ 0 . (5.22)

Combining Eqs. (5.21), (5.22), one finds68,69

mH ∝ m̂f for
1

m̂f
∼ 0 , (5.23)

where m̂f is the renormalisation-group-invariant current-quark mass of the
flavour-nonsinglet pseudoscalar meson’s heaviest constituent. This is the
result one would have anticipated from constituent-quark models but here
we have indicated a direct proof in QCD.

Pseudoscalar mesons hold a special place in QCD and there are three
states, composed of u,d quarks, in the hadron spectrum with masses be-
low 2 GeV:33 π(140); π(1300); and π(1800). Of these, the pion [π(140)]
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is naturally well known and much studied. The other two are observed,
e.g., as resonances in the coherent production of three pion final states
via pion-nucleus collisions 70. In the context of a model constituent-quark
Hamiltonian, these mesons are often viewed as the first three members of
a QQ̄ n 1S0 trajectory, where n is the principal quantum number; i.e., the
π(140) is viewed as the S-wave ground state and the others are its first
two radial excitations. By this reasoning the properties of the π(1300) and
π(1800) are likely to be sensitive to details of the long-range part of the
quark-quark interaction because the constituent-quark wave functions will
possess material support at large interquark separation. Hence the devel-
opment of an understanding of their properties may provide information
about light-quark confinement, which complements that obtained via an-
gular momentum excitations 71. As we have emphasised, the development
of an understanding of confinement is one of the greatest intellectual chal-
lenges in physics.

We have already seen that Eq. (5.11) is a powerful result. That is fur-
ther emphasised by the fact that it is applicable here, too.72,73 The result
holds at each pole common to the pseudoscalar and axial-vector vertices
and therefore it also impacts upon the properties of non ground state pseu-
doscalar mesons. Let’s work with a label n ≥ 0 for the pseudoscalar mesons:
πn, with n = 0 denoting the ground state, n = 1 the state with the next
lowest mass, and so on. Plainly, by assumption, mπn 6=0 > mπ0 , and hence
mπn 6=0 > 0 in the chiral limit. Moreover, the ultraviolet behaviour of the
quark-antiquark scattering kernel in QCD guarantees that Eq. (5.13) is cut-
off independent. Thus

0 < ρ0
πn

(ζ) := lim
m̂→0

ρπn(ζ) < ∞ , ∀n . (5.24)

Hence, it is a necessary consequence of chiral symmetry and its dynamical
breaking in QCD; viz., Eq. (5.11), that

f0
πn
≡ 0 , ∀n ≥ 1 . (5.25)

This result is consistent with Refs. [74], as appreciated in Ref. [75]. It means
that in the presence of DCSB all pseudoscalar mesons except the ground
state decouple from the weak interaction. NB. Away from the chiral limit
the quantities fπn alternate in sign; i.e., they are positive for even n but
negative for odd n. This is because they are the residues of poles in a
vertex that, considered as a function of P 2, is continuous and does not
vanish between adjacent bound state poles.
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This argument is legitimate in any theory that has a valid chiral limit. It
is logically possible that such a theory does not exhibit DCSB; i.e., realises
chiral symmetry in the Wigner-Weyl mode, as was illustrated in Sec. 4.1
and is the case in QCD above the critical temperature for chiral symmetry
restoration.35 Equation (5.11) is still valid in the Wigner phase. However,
its implications are different; namely, in the Wigner phase, one has

BW (0, ζ2) ∝ m(ζ) ∝ m̂ ; (5.26)

i.e., the mass function and constituent-quark mass vanish in the chiral limit.
This result is accessible in perturbation theory. Equation (5.15) applies if
there is a massless bound state in the chiral limit. Suppose such a bound
state persists in the absence of DCSB.l It then follows from Eqs. (5.15) and
(5.26) that

fW
π0
∝ m̂ . (5.27)

In this case the leptonic decay constant of the ground state pseudoscalar
meson also vanishes in the chiral limit, and hence all pseudoscalar mesons
are blind to the weak interaction.

It is always true that

fπ0 ρπ0(ζ)
m̂≈0∝ −〈q̄q〉0ζ . (5.28)

In the Wigner phase 34, 〈q̄q〉0 W
ζ ∝ m̂3. Hence, via Eq. (5.11), if a rigorously

chirally symmetric theory possesses a massless pseudoscalar bound state
thenm

mW
π0

m̂≈0∝ m̂ . (5.29)

In this case there is also a degenerate scalar meson partner whose mass
behaves in the same manner.

In the presence of DCSB the ground state neutral pseudoscalar me-
son decays predominantly into two photons, a process connected with the
Abelian anomaly. Given that fπn 6=0 ≡ 0 in the chiral limit, it is natural
to ask whether πn6=0 → γγ is similarly affected. Since rainbow-ladder is
the leading order in a symmetry preserving truncation, it can be used to
provide a model-independent analysis of this process. In this instance, the

lIf that is false then considering this particular case is unnecessary. However, it is true
at the transition temperature in QCD 35.

mcf. The case of DCSB; i.e., the Nambu phase, wherein mN
πo

m̂≈0∝ √
m̂, Eq. (5.20).
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Figure 11. This axial-vector Ward-Takahashi identity is an analogue of Eq. (5.9). It
is valid if, and only if: the dressed-quark propagator, S, is obtained from Eq. (5.53);
the axial-vector vertex, Γ5µ, is obtained from Eq. (5.4) with a ladder-like kernel, K,
that ensures Eq. (5.9); the pseudoscalar vertex is constructed analogously; and the un-
amputated renormalised quark-antiquark scattering matrix: G = (SS) + (SS)K(SS) +
(SS)K(SS)K(SS) + [. . .], is constructed from the elements just described. (Adapted
from Ref. [73].)

two-photon coupling for all u, d pseudoscalar mesons, including n = 0, is
described by the renormalised triangle diagrams

T 3
5µνρ(k1, k2) = tr

∫ M

`

Š(`0+) Γ3
5ρ(`0+, `−0) Š(`−0)

× iQ̌Γµ(`−0, `) Š(`) iQ̌Γν(`, `0+) , (5.30)

T 3
5µν(k1, k2) = tr

∫ M

`

Š(`0+) Γ3
5(`0+, `−0) Š(`−0)

× iQ̌Γµ(`−0, `) Š(`) iQ̌Γν(`, `0+) , (5.31)

where `αβ = ` + αk1 + βk2, the electric charge matrix Q̌ = diag[eu, ed] =
e diag[2/3,−1/3], Š = diag[Su, Sd] and

[Γµ(k; P )]tu = Z2 [γµ]tu +
∫ Λ

q

[Š(q+)Γµ(q; P )Š(q−)]srK
rs
tu (q, k;P ) (5.32)

is the renormalised dressed-quark-photon vertex. (We assume subsequently
that mu(ζ) = m(ζ) = md(ζ) so that Su = Sd.)

The dressed-quark propagators in Eqs. (5.30) – (5.32) are understood to
be calculated using a rainbow-truncation gap equation, and K is a ladder-
like quark-antiquark scattering kernel that ensures Eq. (5.9) is satisfied. At
this point, nothing more need be said of these elements. The results we
describe are independent of the details discussed in Sec. (5.2.2).

Under the conditions just described, one may derive 76 the Ward-
Takahashi identity for the quark-antiquark scattering matrix, G, depicted
in Fig. 11. Using this identity it can be shown77

PρT
3
5µνρ(k1, k2) + 2im(ζ)T 3

5µν(k1, k2) =
α

2π
εµνρσk1ρk2σ , (5.33)
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where α = e2/(4π). This is an explicit demonstration that the triangle-
diagram representation of the axial-vector–two-photon coupling calculated
in the rainbow-ladder truncation is a necessary and sufficient pairing to
preserve the Abelian anomaly.

In general the coupling of an axial-vector current to two photons is
described by a six-point Schwinger function, to which Eq. (5.30) is an ap-
proximation. The same is true of the pseudoscalar–two-photon coupling
and its connection with Eq. (5.31). Equation (5.33) is valid for any and all
values of P 2 = (k1 + k2)2. It is an exact statement of a divergence relation
between these two six-point Schwinger functions, which is preserved by the
rainbow-ladder truncation, and any systematic improvement thereof. We
can now report corollaries of Eq. (5.33) that have important implications
for the properties of pseudoscalar bound states.

It follows from the discussion presented above that, unless there is a
reason for the residue to vanish, every isovector pseudoscalar meson appears
as a pole contribution to the axial-vector and pseudoscalar vertices:64

Γj
5µ(k; P )

∣∣∣
P 2+m2

πn
≈0

=
fπn Pµ

P 2 + m2
πn

Γj
πn

(k;P ) + Γj reg
5µ (k; P ) , (5.34)

iΓj
5(k; P )

∣∣∣
P 2+m2

πn
≈0

=
ρπn(ζ)

P 2 + m2
πn

Γj
πn

(k;P ) + iΓj reg
5 (k; P ) , (5.35)

where the residues are given in Eqs. (5.12), (5.13); viz., each vertex may
be expressed as a simple pole plus terms regular in the neighbourhood of
this pole, with Γj

πn
(k; P ) being the bound state’s canonically normalised

Bethe-Salpeter amplitude.
If one inserts Eqs. (5.34) and (5.35) into Eq. (5.33), and uses Eq. (5.11),

one finds that in the neighbourhood of each electric-charge-neutral
pseudoscalar-meson bound-state pole

PρT
3 reg
5µνρ(k1, k2)+2im(ζ)T 3 reg

5µν (k1, k2)+fπn T
π0

n
µν (k1, k2) =

α

2π
iεµνρσk1ρk2σ .

(5.36)
In this equation, T 3 reg(k1, k2) are nonresonant or continuum contributions
to the relevant Schwinger functions, whose form is concretely illustrated
upon substitution of Γj reg

5µ (k; P ) and Γj reg
5 (k;P ) into Eqs. (5.30) and (5.31),

respectively. Moreover, T
π0

n
µν is the six-point Schwinger function describing

the bound state contribution, which in rainbow-ladder truncation is realised



January 27, 2006 12:22 Proceedings Trim Size: 9in x 6in CDRoberts

54

as

T
π0

n
µν (k1, k2) = tr

∫ M→∞

`

Š(`0+) Γπ0
n
(`− 1

2
1
2
;P ) Š(`−0)

× iQ̌Γµ(`−0, `) Š(`) iQ̌Γν(`, `0+) . (5.37)

This Schwinger function describes the direct coupling of a pseudoscalar
meson to two photons. The support properties of the bound state Bethe-
Salpeter amplitude guarantee that the renormalised Schwinger function is
finite so that the regularising parameter can be removed; i.e., M →∞.

We note that owing to the O(4) (Euclidean Lorentz) transformation
properties of each term on the lhs in Eq. (5.33), one may write

PρT
3 reg
5µνρ(k1, k2) =

α

π
iεµνρσk1ρk2σ A3 reg(k1, k2) , (5.38)

T 3 reg
5µν (k1, k2) =

α

π
iεµνρσk1ρk2σ P 3 reg(k1, k2) , (5.39)

T
π0

n
µν (k1, k2) =

α

π
iεµνρσk1ρk2σ Gπ0

n(k1, k2) , (5.40)

so that Eq. (5.33) can be compactly expressed as

A3 reg(k1, k2) + 2im(ζ)P 3 reg(k1, k2) + fπnGπ0
n(k1, k2) =

1
2
. (5.41)

It follows from Eqs. (5.25), (5.36) that in the chiral limit all pseudoscalar
mesons, except the Goldstone mode, decouple from the divergence of the
axial-vector–two-photon vertex.

In the chiral limit the pole associated with the ground state pion appears
at P 2 = 0 and thus

PρT
3
5µνρ(k1, k2)

∣∣
P 2 6=0

= PρT
3 reg
5µνρ(k1, k2)

∣∣∣
P 2 6=0

=
α

2π
iεµνρσk1ρk2σ ; (5.42)

namely, outside the neighbourhood of the ground state pole the regular (or
continuum) part of the divergence of the axial-vector vertex saturates the
anomaly in the divergence of the axial-vector–two-photon coupling. On the
other hand, in the neighbourhood of P 2 = 0

A3 reg(k1, k2)
∣∣
P 2'0

+ fπ0 Gπ0(k1, k2) =
1
2

; (5.43)

i.e., on this domain the contribution to the axial-vector–two-photon cou-
pling from the regular part of the divergence of the axial-vector vertex
combines with the direct π0

0γγ vertex to fulfill the anomaly. This fact was
illustrated in Ref. [65] by direct calculation: Eqs. (5.15) – (5.18) are an es-
sential part of that demonstration.
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If one defines

Ťπ0
n
(P 2, Q2) = Gπ0

n(k1, k2)
∣∣∣
k2
1=Q2=k2

2

, (5.44)

in which case P 2 = 2(k1 · k2 + Q2), then the physical width of the neutral
ground state pion is determined by

gπ0
0γγ := Ťπ0

0
(−m2

π0
0
, 0); (5.45)

viz., the second term on the l.h.s. of Eq. (5.43) evaluated at the on-shell
points. This result is not useful unless one has a means of estimating
the contribution from the first term; viz., A3 reg(k1, k2). However, that is
readily done. A consideration 64 of the structure of the regular piece in
Eq. (5.34) indicates that the impact of this continuum term on the π0

0γγ

coupling is modulated by the magnitude of the pion’s mass, which is small
for realistic u and d current-quark masses and vanishes in the chiral limit.
One therefore expects this term to contribute very little and anticipates
from Eq. (5.43) that

gπ0
0γγ =

1
2

1
fπ0

(5.46)

is a good approximation. This is verified in explicit calculations; e.g., in
Ref. [78], which evaluates the triangle diagrams described herein, the first
term on the l.h.s. modifies the result in Eq. (5.46) by less than 2%.

There is no reason to expect an analogous result for pseudoscalar mesons
other than the π(140); i.e., the states which we denote by n ≥ 1. Indeed,
as all known such pseudoscalar mesons have experimentally determined
masses that are greater than 1 GeV, the reasoning used above suggests
that the presence of the continuum terms, A3 reg(k1, k2) and P 3 reg(k1, k2),
must materially impact upon the value of gπ0

1γγ . This was shown to be true
in Ref. [73]; e.g., gπ0

1γγ = −0.13 gπ0
0γγ .

On the kinematically accessible Q2 domains, Ťπ0
0
(−m2

π0
, Q2) > 0 and

Ťπ0
1
(−m2

π1
, Q2) < 0. It is anticipated that this pattern of signs will repeat,

as described after Eq. (5.25); i.e., on the kinematically accessible domains
Ťπ0

n
(−m2

πn
, Q2) is positive for even n and negative for odd n.

We have stated that the rainbow-ladder truncation preserves the one-
loop renormalisation group properties of QCD. It follows that Eq. (5.37)
should reproduce the leading large-Q2 behaviour of the γ∗(Q)πn(P )γ∗(Q)
transition form factor inferred from perturbative QCD. That is true.79

Reference [73] considered the general case; i.e., arbitrary n, and proved

Ťπ0
n
(−m2

πn
, Q2)

Q2ÀΛ2
QCD=

4π2

3

[
fπn

Q2
+ F (2)

n (−m2
πn

)
lnγ Q2/ω2

πn

Q4

]
, (5.47)
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Figure 12. Evolution of ground and first excited state pseudoscalar mesons’ electro-
magnetic charge radii with the scale parameter ω in Eq. (5.51): ra = 1/ω gauges the
range of the confining interaction between light quarks. Dotted line: rπ = 0.66 fm, which
indicates the experimental value of the ground state’s radius. The radius is evaluated
numerically from the electromagnetic form factor. That is the primary source of the
theory error depicted in the figure, which corresponds to a relative error . 1% for n = 0
and . 3% for n = 1. (Adapted from Ref. [73].)

where: γ is an anomalous dimension, which cannot be determined accu-
rately in rainbow-ladder truncation; ωπn is a mass-scale that gauges the
momentum space width of the pseudoscalar meson; and F

(2)
n (−m2

πn
) is a

structure-dependent constant, similar but unrelated to fπn .n It is now plain
that ∀n ≥ 1

lim
m̂→0

Ťπ0
n
(−m2

πn
, Q2)

Q2ÀΛ2
QCD=

4π2

3
F (2)

n (−m2
πn

)
lnγ Q2/ω2

πn

Q4

∣∣∣∣
m̂=0

; (5.48)

namely, in the chiral limit the leading-order power-law in the transition
form factor for excited state pseudoscalar mesons is O(1/Q4). This is a
novel, nonperturbative and model-independent result.

Reference [73] also provides quantitative illustrations of these and other
results relating to the electromagnetic properties of ground- and excited-
state pseudoscalar mesons. For example, the two photon width of the

nWith the interaction of Eq. (5.51), F
(2)
1 (−m2

πn
) ' −〈q̄q〉0, and it is generally nonzero

in the chiral limit.
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π1-meson is estimated

Γπ1γγ ' 240 eV ' 30Γπ0γγ , (5.49)

as is the electromagnetic radius of the charge states

rπ1 ' 1.4 rπ0 . (5.50)

These results were obtained with the model rainbow-ladder interaction
described below, in Sec. 5.2.2. However, the calculation of the latter was
used to verify that the properties of excited states are indeed a sensitive
probe of the interaction between light-quarks at long-range. This is shown
in Fig. 12. As with so many properties of the ground state Goldstone
mode, its radius is protected against rapid evolution by DCSB. However,
the charge radius of the first excited state changes swiftly with increasing ω,
with the ratio rπ1/rπ0 varying from 0.9 – 1.2. This outcome can readily be
interpreted. The length-scale ra := 1/ω is a measure of the range of strong
attraction: magnifying ra increases the active range of the confining piece
of the interaction. This effectively strengthens the confinement force and
that compresses the bound state, as one observes in Fig. 12: rπ1 decreases
quickly with decreasing ω (increasing ra). While it is natural to suppose
rπ1 > rπ0 ; namely, that a radial excitation is larger than the associated
ground state, the calculations of Ref. [73] illustrated that with the ground
state pseudoscalar meson’s properties constrained by Goldstone’s theorem
and its pointwise consequences, Eqs. (5.15) – (5.18), it is possible in quan-
tum field theory for a confining interaction to compress the excited state
with the consequence that rπ1 < rπ0 .

A related result for the evolution of the mass was observed in Ref. [72];
namely, the mass of the first excited state dropped rapidly with increasing
ra. (However, in this case DCSB guarantees mπ1 > mπ0 .) On the ω-domain
illustrated in Fig. 12, the mass of the ground state obtained with nonzero
current-quark mass varied by only 3% while that of the first excited state
changed by 14%. It is natural to expect that an increase in the strength of
the confinement force should increase the magnitude of the binding energy
and hence reduce the mass. That is precisely what occurs.

5.2.2. Practical, predictive tool

We have stated that there is a systematic, nonperturbative symmetry-
preserving truncation of the DSEs. The leading-order is provided by the
renormalisation-group-improved rainbow-ladder truncation, which has been
used widely; e.g., Refs. [80, 81, 82], and references thereto. A practical
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renormalisation-group-improved rainbow-ladder truncation preserves the
one-loop ultraviolet behaviour of perturbative QCD. However, a model as-
sumption is required for the behaviour of the kernel in the infrared; viz.,
on the domain Q2 ∼< 1GeV2, which corresponds to length-scales ∼> 0.2 fm.
This is the confinement domain whereupon little is truly known about the
interaction between light-quarks. That information is, after all, what we
seek!

The systematic application of a single model to an extensive range of
JLab-related phenomena is pursued in Refs. [61, 78, 83, 84, 85, 86, 87, 88,
89]. The model interaction is expressed via

Ǧ(Q2)
Q2

=
4π2

ω6
D Q2e−Q2/ω2

+
8π2 γm

ln
[
τ +

(
1 + Q2/Λ2

QCD

)2
] F̌ (Q2) , (5.51)

wherein F̌ (Q2) = [1−exp(−Q2/[4m2
t ])]/Q2, mt = 0.5GeV; τ = e2−1; γm =

12/25; and ΛQCD = Λ(4)

MS
= 0.234GeV. (NB. Eq. (5.51) gives α(m2

Z) =
0.126.) This simple form represents the interaction strength as a sum of two
terms: the second ensures that perturbative behaviour is preserved at short-
range; and the first provides for the possibility of enhancement in K and
the gap equation’s kernel at long-range.49 The true parameters in Eq. (5.51)
are D and ω, which together determine the integrated infrared strength
of the rainbow-ladder kernel; i.e., the so-called interaction tension,36 σ∆.
However, we emphasise that they are not independent:83 in fitting to a
selection of observables, a change in one is compensated by altering the
other; e.g., on the domain ω ∈ [0.3, 0.5]GeV, the fitted observables are
approximately constant along the trajectory90

ω D = (0.72 GeV)3 =: m3
g. (5.52)

This correlation: a reduction in D compensating an increase in ω, acts to
keep a fixed value of the interaction tension. Equation (5.51) is thus a
one-parameter model. NB. As we saw in connection with Fig. 9, this value
of mg is typical of the mass-scale associated with nonperturbative gluon
dynamics.

With the interaction in Eq. (5.51), one obtains the rainbow-truncation
gap equation:

S(p)−1 = Z2 (iγ · p + mbare) +
∫ Λ

q

Ǧ((p− q)2)Dfree
µν (p− q)

λa

2
γµS(q)

λa

2
γν ,

(5.53)
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Figure 13. Quark mass function obtained by solving the complex formed by Eqs. (5.6),
(5.51), (5.53), (5.54). NB. A nonzero solution is obtained in the chiral limit. This
solution is power law suppressed in the ultraviolet 45,46 and essentially nonperturbative.
Thus when the u, d-quark solution melds with the chiral limit solution one has entered
the domain on which all effects are primarily nonperturbative. The transition takes place
for mg ∼< s ∼< 3 mg . (Adapted from Ref. [69].)

wherein Dfree
µν (`) is the free gauge boson propagator; namely, the Euclidean

space version of Eq. (2.27). The self-consistent solution obtained with
current-quark masses (in GeV):

f chiral u, d s c b

mf (ζ) 0.0 0.0037 0.082 0.97 4.1
(5.54)

with ζ = 19 GeV, is depicted in Fig. 13.
The mass function is a renormalisation group invariant and can be used

to define a Euclidean constituent-quark mass; viz.,o

(ME)2 := s | s = M(s)2. (5.55)

For the solutions depicted in Fig. 13, one finds (in GeV)

f chiral u, d s c b

ME
f 0.42 0.42 0.56 1.57 4.68

(5.56)

oThe model produces dressed-quarks, which are confined in the sense that their prop-
agator does not exhibit a true Minkowski space mass pole; i.e., there is no solution of
s + M(s)2 = 0.
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Figure 14. Ratio σQ/ME
Q [Eqs. (5.55) & (5.57)] as a function of current-quark mass.

It is a measure of the current-quark-mass-dependence of dynamical chiral symmetry
breaking: a zero value indicates complete dominance of dynamical over explicit chiral
symmetry breaking; and a value of one, the opposite. The vertical dotted lines correspond
to the u = d, s, c and b current-quark masses listed in Eq. 5.54. (Adapted from Ref. [89].)

The ratio Ľf := ME
f /mf (ζ) is a measure of the impact of the DCSB mech-

anism on a particular flavour of quark. A comparison between Eqs. (5.54)
and (5.56) shows that for quark flavours with m̂f ¿ mg the effect of DCSB
on their propagation characteristics is very great ∀ s ∼< mg. The domain
on which the impact is large diminishes rapidly as the current-quark mass
increases.

Another way of looking at this is via a constituent-quark σ-term:89,132

σf := mf (ζ)
∂ME

f

∂mf (ζ)
. (5.57)

This renormalisation-group-invariant can be determined from solutions of
the gap equation, Eq. (5.53), and is a keen probe of the impact of explicit
chiral symmetry breaking on the mass function. The ratio σf/ME

f plotted
in Fig. 14 therefore measures the effect of explicit chiral symmetry breaking
on the dressed-quark mass-function compared with the sum of the effects of
explicit and dynamical chiral symmetry breaking. It is evident in the figure
that this ratio vanishes for light-quarks because the magnitude of their
constituent-mass owes primarily to dynamical chiral symmetry breaking,
while for heavy-quarks it approaches one. A useful illustration of the chiral
limit behaviour is provided by the model in Sec. 4.2, which yields algebraic
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results in the neighbourhood of the chiral limit:133 ME
0 = 1√

2
Ǧ, σ0 = 3

2 m,
and hence σ0

ME
0

= 3√
2

m
Ǧ

. With the parameter values in Ref. [42], this gives
an estimate σ0

ME
0
≈ 0.04 for u = d quarks.

A value for the vacuum quark condensate, Eq. (5.19), may be obtained
from the chiral limit solution depicted in Fig. 13

− 〈q̄q〉0ζ = lim
Λ→∞

Z4(ζ, Λ) Nc trD
∫ Λ

q

Sm̂=0(q) = (0.275GeV)3 . (5.58)

Since QCD is multiplicatively renormalisable, then

〈q̄q〉0ζ′ = Zm(ζ ′, ζ) 〈q̄q〉0ζ . (5.59)

Applying one-loop evolution to define the vacuum condensate at a typical
hadronic scale, one therefore obtains81

− 〈q̄q〉0ζ=1 GeV = (0.24 GeV)3. (5.60)

This condensate might be interpreted as measuring the density of quark-
antiquark pairs in the vacuum of chiral QCD, in which connection the
result in Eq. (5.60) corresponds to ρq̄q = 1.8 fm−3. Were we to assume
that this vacuum could be viewed as a medium of close-packed spheres,
then each would occupy a volume Vq̄q = 0.55 fm3, which corresponds to
a radius rq̄q = 0.51 fm. For comparison, the measured electromagnetic
charge radius of a pion can thus be written rπ = 0.77rq̄q and that of a
proton, rp = 0.58 rq̄q. It is therefore clear that a veracious understanding
of the length-scale defined by the chiral limit vacuum quark condensate is
a keystone for bridging the gap between theory and experiment.

The renormalisation-group-improved rainbow-ladder truncation ob-
tained with Eq. (5.51) has been employed very successfully. For example, it
predicted 61,84 the electromagnetic pion form factor measured 91 at JLab,p

and over an illustrative basket of thirty-one calculated quantities, tabulated
in Ref. [38], its agreement with data has an average relative error of 1.6%
and standard-deviation of 15%.

5.2.3. Beyond rainbow-ladder

We have stated that rainbow-ladder is the leading order in a nonpertur-
bative, systematic and symmetry preserving truncation of the DSEs. This

pThe result is perhaps too good given that pion-loop contributions were omitted. Such
effects, which appear beyond rainbow-ladder truncation, are important at small momen-
tum transfer. For example, they add ∼< 15% to the rainbow-ladder result for rπ .92
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Figure 15. Integral equation for a planar dressed-quark-gluon vertex. The “springs”
between dressed-quark lines indicate the dressed-gluon propagator. The first diagram
depicts the rainbow-truncation; the second adds a single gluon rung; etc. While this series
apparently neglects the three-gluon vertex, its effect has satisfactorily been modelled via
the Ansatz g2 → − Čg2.60 The change of sign is an important consequence of the non-
Abelian nature of QCD. (Adapted from Ref. [93].)

�M =�n �n� �M + �a;n�
�a;n� = �M�n�1� + �M�n�1� + �a;n�1�

Figure 16. Implicit definition of the integral equation for a symmetry preserving Bethe-
Salpeter kernel that is consistent with the vertex depicted in Fig. 15. Beyond rainbow-
truncation, symmetry preservation requires that this kernel be nonplanar even though
the vertex in the gap equation is planar. (Adapted from Ref. [93].)

is explained and illustrated well in Refs. [60, 63, 93]. Figure 15 depicts a
natural extension of the vertex Ansatz in Eq. (4.7). It modifies the gap
equation’s kernel. In order to preserve the axial-vector Ward-Takahashi
identity, Eq. (5.9), the Bethe-Salpeter kernel, K, must also be modified.
That is systematically accomplished for this vertex via the procedure indi-
cated in Fig. 16, as detailed in Refs. [60, 93].

The model interaction of Eq. (4.22) provides an excellent tool with which
to illustrate the procedure. When used for the “spring” in the diagrams of
Figs. 15, 16, it gives the results in Table 2. The first striking observation is
that mπ = 0 in the chiral limit for every value of n. Plainly, the truncation
procedure preserves the Ward-Takahashi identity, Eq. (5.9). In addition, all
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Table 2. Calculated π- and ρ-meson masses, in GeV, quoted with Ǧ = 0.65GeV in
which case m = 0.016Ǧ = 10MeV. n is the number of interaction rungs retained in dress-
ing the quark-gluon vertex, see Fig. (15), and hence the order of the vertex-consistent
Bethe-Salpeter kernel. NB. n = 0 corresponds to the rainbow-ladder truncation, in
which case mρ =

√
2 Ǧ for m = 0.

Mn=0
H Mn=1

H Mn=2
H Mn=∞

H

π, m = 0 0 0 0 0
π, m = 0.011 0.147 0.135 0.139 0.138
ρ, m = 0 0.920 0.648 0.782 0.754
ρ, m = 0.011 0.936 0.667 0.798 0.770

of the ρ-π mass splitting is present in the chiral limit. This answers the
questions raised on page 27 and in connection with Table 1: the remarkably
large difference between the π and ρ masses owes to DCSB, which forces mπ

to be unnaturally small. It is also apparent that mπ is not very sensitive
to the order of the truncation. This is another corollary of DCSB for the
Goldstone mode; namely, the cancellations which ensure mπ = 0 in the
chiral limit are still quite effective for small nonzero current-quark masses.
Finally, mρ does exhibit some sensitivity to the order of the truncation.
The rainbow-ladder truncation is accurate to 20%; the one-loop correction,
to 13%; and the two-loop result, to 4%. At this point one has become
very sensitive to details of the model and is thus in a position to make
a quantitatively accurate map of the interaction between light-quarks at
long-range via comparison with experiment. These results explain the level
of accuracy attained with a rainbow-ladder truncation based on Eq. (5.51).

Reference [60] provides a discussion of the transition between the light-
quark and heavy-quark sectors, and the relative strength of the corrections
to rainbow-ladder truncation as this transition is made. Herein we only
illustrate the results with Fig. 17, from which it is apparent that with in-
creasing current-quark mass the contributions from nonplanar diagrams
and vertex corrections are suppressed. Naturally, they must still be in-
cluded in precision spectroscopic calculations. As usual, for small current-
quark masses, owing to the effects of DCSB, the pseudoscalar channel is
a little different. However, the trend in this channel becomes the same as
that in the vector channel for current-quark masses above ∼ 2 ms.

A contemporary challenge is to generalise the procedure described in
this section to mesons composed of constituents with different current-quark
masses. Trajectories for such states are presented in Ref. [94] but only on
a limited mass domain. It is important to expand this domain, e.g., in
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Figure 17. Evolution with current-quark mass of the relative difference between the
meson mass calculated in the rainbow-ladder truncation and the exact value. Solid lines:
vector meson trajectories; and dashed-lines; pseudoscalar meson trajectories. The dotted
vertical lines mark the u = d, s, c and b current-quark masses. (Adapted from Ref. [60].

order to increase the capacity for description and prediction, and to make
further contact with results that are exact in the limit of one infinitely
heavy constituent.

6. Baryon Properties

Significant progress has been made with the study of mesons. While that
is good, it does not directly impact on the important challenge of baryons.
Mesons fall within the class of two-body problems. They are the simplest
bound states for theory. However, the absence of meson targets poses sig-
nificant difficulties for the experimental verification of predictions such as
those reported above. On the other hand, it is relatively straightforward
to construct a proton target but, as a three-body problem in relativistic
quantum field theory, here the difficulty is for theory. With this problem
the current expertise is approximately at the level it was for mesons ten
years ago; namely, model building and phenomenology, making as much
use as possible of the results and constraints outlined above.

A natural primary aim is to provide a true picture of the proton’s elec-
tromagnetic form factors and therefrom a reliable determination of the
ratio depicted in Fig. 4. On the domain of momentum transfer for which
there is apparently a discrepancy between the experimental results; namely,
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Q2 > M2, where M is the nucleon’s mass, a veracious understanding of
these and other contemporary data require a Poincaré covariant descrip-
tion of the nucleon. This is apparent in applications of relativistic quantum
mechanics; e.g., Refs. [95, 96, 97, 98, 99]. A different tack follows the for-
mulation of a Poincaré covariant Faddeev equation 100,101. Its foundation
is understood through the observation that the same interaction which de-
scribes colour-singlet mesons also generates quark-quark (diquark) correla-
tions in the colour-3̄ (antitriplet) channel 102. While diquarks do not survive
as asymptotic states;60,63,93,103 i.e., they do not appear in the strong inter-
action spectrum, the attraction between quarks in this channel grounds a
picture of baryons in which two quarks are always correlated as a colour-3̄
diquark pseudoparticle, and binding is effected by the iterated exchange of
roles between the bystander and diquark-participant quarks.

A first numerical study of this Faddeev equation for the nucleon was
reported in Ref. [104], and following that there have been numerous more
extensive analyses; e.g., Refs. [105, 106, 107, 108]. It has become apparent
that the dominant correlations for ground state octet and decuplet baryons
are scalar and axial-vector diquarks, primarily because the associated mass-
scales are smaller than the masses of these baryons 109,110 and the positive
parity of the correlations matches that of the baryons. Both scalar and
axial-vector diquarks provide attraction in the Faddeev equation; e.g., a
scalar diquark alone provides for a bound octet baryon and including axial-
vector correlations reduces that baryon’s mass.

With the retention of axial-vector diquark correlations a quantitative
description of baryon properties is attainable. Indeed, the formulation of
Ref. [106] employs confined quarks, and confined pointlike-scalar and -axial-
vector diquark correlations, to obtain a spectrum of octet and decuplet
baryons in which the rms-deviation between the calculated mass and ex-
periment is only 2%. The model also reproduces nucleon form factors over
a large range of momentum transfer 111, and its descriptive success in that
application is typical of such Poincaré covariant treatments; e.g., Refs. [112,
113, 114, 115].

However, these successes might themselves indicate a flaw in the applica-
tion of the Faddeev equation to the nucleon. For example, in the context of
spectroscopy, studies using the Cloudy Bag Model (CBM) 116 indicate that
the dressed-nucleon’s mass receives a negative contribution of as much as
300-400MeV from pion self-energy corrections; i.e., 117,118 δM+ = −300 to
−400MeV. Furthermore, a perturbative study, using the Faddeev equation,
of the mass shift induced by pointlike-π exchange between the quark and
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diquark constituents of the nucleon obtains 119 δM+ = −150 to −300MeV.
Unameliorated these mutually consistent results would much diminish the
value of the 2% spectroscopic accuracy obtained using only quark and di-
quark degrees of freedom.

In addition to masses, pseudoscalar meson loops make important con-
tributions to many other baryon properties; e.g., to charge and magnetic
radii, and magnetic moments.120,121 These effects must not be overlooked
because the size and qualitative impact of meson contributions provide ma-
terial constraints on the development of a realistic quark-diquark picture
of the nucleon, and its interpretation and application.

6.1. Faddeev Equation

For quarks in the fundamental representation of colour-SU(3):

3c ⊗ 3c ⊗ 3c = (3̄c ⊕ 6c)⊗ 3c = 1c ⊕ 8′c ⊕ 8c ⊕ 10c , (6.1)

and hence any two quarks in a colour-singlet three-quark bound state must
constitute a relative colour-antitriplet. This fact enables the derivation of a
Faddeev equation for the bound state contribution to the three quark scat-
tering kernel 100 because the same kernel that describes mesons so well 38 is
also attractive for quark-quark scattering in the colour-3̄ channel.

In this truncation of the three-body problem the interactions between
two selected quarks are added to yield a quark-quark scattering matrix,
which is then approximated as a sum over all possible diquark pseudopar-
ticle terms 104: Dirac-scalar + -axial-vector +[. . .]. The Faddeev equation
thus obtained describes the baryon as a composite of a dressed-quark and
nonpointlike diquark with an iterated exchange of roles between the by-
stander and diquark-participant quarks. The baryon is consequently rep-
resented by a Faddeev amplitude:

Ψ = Ψ1 + Ψ2 + Ψ3 , (6.2)

where the subscript identifies the bystander quark and, e.g., Ψ1,2 are ob-
tained from Ψ3 by a correlated, cyclic permutation of all the quark labels.

The Faddeev equation is simplified further by retaining only the light-
est diquark correlations in the representation of the quark-quark scatter-
ing matrix. A simple Goldstone-theorem-preserving, rainbow-ladder DSE-
model 109 yields the following diquark pseudoparticle masses (isospin sym-
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metry is assumed):

(qq)JP (ud)0+ (us)0+ (uu)1+ (us)1+

mqq (GeV) 0.74 0.88 0.95 1.05
(qq)JP (ss)1+ (uu)1− (us)1− (ss)1−
mqq (GeV) 1.13 1.47 1.53 1.64

(6.3)

The mass ordering is characteristic and model-independent (cf. Refs. [110,
122], lattice-QCD estimates 123 and studies of the spin-flavour dependence
of parton distributions 124), and indicates that a study of the N and ∆ must
retain at least the scalar and pseudovector (uu)- and (ud)-correlations if it
is to be accurate. NB. The spin-3/2 ∆ is inaccessible unless pseudovector
correlations are retained.

The simplest realistic representation of the Faddeev amplitude for the
spin- and isospin-1/2 nucleon is therefore

Ψ3(pi, αi, τi) = Ň0+

3 + Ň1+

3 ; (6.4)

namely, a sum of scalar and axial-vector diquark correlations, with
(pi, αi, τi) the momentum, spin and isospin labels of the quarks constitut-
ing the bound state, and P = p1 + p2 + p3 the system’s total momentum.q

For the ∆, since it is not possible to combine an isospin-0 diquark with
an isospin-1/2 quark to obtain isospin-3/2, the spin- and isospin-3/2 ∆
contains only an axial-vector diquark component

Ψ∆
3 (pi, αi, τi) = Ď1+

3 . (6.5)

The scalar diquark piece in Eq. (6.4) is

Ň0+

3 (pi, αi, τi) = [Γ0+
(1

2
p[12]; K)]τ1τ2

α1α2
∆0+

(K) [S(`; P )u(P )]τ3
α3

, (6.6)

where: the spinor satisfies Eq. (A.7), and it is also a spinor in isospin space
with ϕ+ = col(1, 0) for the proton and ϕ− = col(0, 1) for the neutron;
K = p1 + p2 =: p{12}, p[12] = p1 − p2, ` := (−p{12} + 2p3)/3; ∆0+

is
a pseudoparticle propagator for the scalar diquark formed from quarks 1
and 2, and Γ0+

is a Bethe-Salpeter-like amplitude describing their relative
momentum correlation; and S, a 4× 4 Dirac matrix, describes the relative
quark-diquark momentum correlation. (S, Γ0+

and ∆0+
are discussed in

Sect. 6.1.1.) The necessary colour antisymmetry of Ψ3 is implicit in ΓJP

,

qNB. Hereafter we assume isospin symmetry of the strong interaction; i.e., the u- and
d-quarks are indistinguishable but for their electric charge. This simplifies the form of
the Faddeev amplitudes.
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with the Levi-Civita tensor, εc1c2c3 , expressed via the antisymmetric Gell-
Mann matrices; viz., defining

{H1 = iλ7,H2 = −iλ5,H3 = iλ2} , (6.7)

then εc1c2c3 = (Hc3)c1c2 . [See Eqs. (6.31), (6.32).]
The axial-vector component in Eq. (6.4) is

Ň1+
(pi, αi, τi) = [ti Γ1+

µ (1

2
p[12]; K)]τ1τ2

α1α2
∆1+

µν (K) [Ai
ν(`; P )u(P )]τ3

α3
, (6.8)

where the symmetric isospin-triplet matrices are

t+ =
1√
2
(τ0 + τ3) , t0 = τ1 , t− =

1√
2
(τ0 − τ3) , (6.9)

and the other elements in Eq. (6.8) are straightforward generalisations of
those in Eq. (6.6).

The general form of the Faddeev amplitude for the spin- and isospin-3/2
∆ is complicated. However, isospin symmetry means one can focus on the
∆++ with it’s simple flavour structure, because all the charge states are
degenerate, and consider

D1+

3 = [t+Γ1+

µ (1

2
p[12];K)]τ1τ2

α1α2
∆1+

µν (K) [Dνρ(`;P )uρ(P )ϕ+]τ3
α3

, (6.10)

where uρ(P ) is a Rarita-Schwinger spinor, Eq. (A.14).
The general forms of the matrices S(`; P ), Ai

ν(`; P ) and Dνρ(`;P ),
which describe the momentum space correlation between the quark and
diquark in the nucleon and the ∆, respectively, are described in Ref. [106].
The requirement that S(`; P ) represent a positive energy nucleon; namely,
that it be an eigenfunction of Λ+(P ), Eq. (A.11), entails

S(`;P ) = s1(`; P ) ID +
(
iγ · ˆ̀− ˆ̀· P̂ ID

)
s2(`; P ) , (6.11)

where ˆ̀2 = 1, P̂ 2 = −1. In the nucleon rest frame, s1,2 describe, respec-
tively, the upper, lower component of the bound-state nucleon’s spinor.
Placing the same constraint on the axial-vector component, one has

Ai
ν(`; P ) =

6∑
n=1

pi
n(`; P ) γ5 An

ν (`;P ) , i = +, 0,− , (6.12)

where (ˆ̀⊥ν = ˆ̀
ν + ˆ̀· P̂ P̂ν , γ⊥ν = γν + γ · P̂ P̂ν)

A1
ν = γ · ˆ̀⊥ P̂ν , A2

ν = −iP̂ν , A3
ν = γ · ˆ̀⊥ ˆ̀⊥ ,

A4
ν = i ˆ̀⊥

µ , A5
ν = γ⊥ν −A3

ν , A6
ν = iγ⊥ν γ · ˆ̀⊥ −A4

ν .
(6.13)
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Finally, requiring also that Dνρ(`; P ) be an eigenfunction of Λ+(P ), one
obtains

Dνρ(`;P ) = S∆(`; P ) δνρ + γ5A∆
ν (`; P ) `⊥ρ , (6.14)

with S∆ and A∆
ν given by obvious analogues of Eqs. (6.11) and (6.12),

respectively.
We are now in a position to write the Faddeev equation satisfied by Ψ3:
[

S(k;P )u(P )
Ai

µ(k;P )u(P )

]
= − 4

∫
d4`

(2π)4
M(k, `;P )

[
S(`; P )u(P )

Aj
ν(`; P )u(P )

]
. (6.15)

The kernel in Eq. (6.15) is

M(k, `; P ) =

[
M00 (M01)j

ν

(M10)i
µ (M11)ij

µν

]
(6.16)

with

M00 = Γ0+
(kq−`qq/2; `qq)ST(`qq−kq) Γ̄0+

(`q−kqq/2;−kqq) S(`q)∆0+
(`qq) ,

(6.17)
where: `q = `+P/3, kq = k +P/3, `qq = −`+2P/3, kqq = −k +2P/3 and
the superscript “T” denotes matrix transpose; and

(M01)j
ν = tj Γ1+

µ (kq − `qq/2; `qq)

×ST(`qq − kq) Γ̄0+
(`q − kqq/2;−kqq)S(`q)∆1+

µν (`qq) , (6.18)

(M10)i
µ = Γ0+

(kq − `qq/2; `qq)

×ST(`qq − kq) ti Γ̄1+

µ (`q − kqq/2;−kqq) S(`q)∆0+
(`qq) , (6.19)

(M11)ij
µν = tj Γ1+

ρ (kq − `qq/2; `qq)

×ST(`qq − kq) ti Γ̄1+

µ (`q − kqq/2;−kqq) S(`q)∆1+

ρν (`qq) . (6.20)

The ∆’s Faddeev equation is

Dλρ(k;P ) uρ(P ) = 4
∫

d4`

(2π)4
M∆

λµ(k, `; P )Dµσ(`; P )uσ(P ) , (6.21)

with

M∆
λµ = t+Γ1+

σ (kq − `qq/2; `qq)

×ST(`qq − kq) t+Γ̄1+

λ (`q − kqq/2;−kqq)S(`q)∆1+

σµ(`qq). (6.22)

The Faddeev equation is illustrated in Fig. 18. It is a linear, homoge-
neous matrix equation whose solution yields the Poincaré covariant Faddeev
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Figure 18. Pictorial representation of the Faddeev equation, Eq. (6.15). A nucleon of
four-momentum P is constituted from a dressed-quark (single line, momentum pq = kq)
and dressed-diquark (double line, momentum pd = kqq). Binding is effected by an
iterated exchange of roles between the bystander and diquark-participant quarks, which
is described by the kernels M in Eqs. (6.17)-(6.20), (6.22). The exchange takes place
within the shaded region.

amplitude, which describes the relative motion between the quark and di-
quark within the baryon. Orbital angular momentum is not a Poincaré
invariant. However, if absent in a particular frame, it will almost in-
evitably appear in another frame related via a Poincaré transformation.
Nonzero quark orbital angular momentum is the necessary outcome of a
Poincaré covariant description. This is why the covariant Faddeev ampli-
tude is a matrix-valued function with a rich structure that, in the baryons’
rest frame, corresponds to a relativistic wave function with s-wave, p-wave
and even d-wave components. (Details can be found in Ref. [125], Sec. 2.4.)

6.1.1. Faddeev equation kernels

To complete the Faddeev equations, Eqs. (6.15) & (6.21), one must specify
the dressed-quark propagator, the diquark Bethe-Salpeter amplitudes and
the diquark propagators that appear in the kernels.

Dressed-quark propagator. This propagator has the general form given
in Eq. (4.3) and herein we have already provided an overview of its prop-
erties. In solving the Faddeev equation described above one is required
to repeatedly evaluate some eight-dimensional integrals. Thus, while it is
straightforward to obtain a numerical solution of a truncation of QCD’s
gap equation, the utility of an algebraic form for S(p) is self-evident. An
efficacious parametrisation, which exhibits the features described above and
has been used extensively in studies of hadron properties, is expressed via

σ̄S(x) = 2 m̄ F̌ (2(x + m̄2)) + F̌ (b1x) F̌ (b3x)
[
b0 + b2F̌ (εx)

]
, (6.23)

σ̄V (x) =
1

x + m̄2

[
1− F̌ (2(x + m̄2))

]
, (6.24)
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with x = p2/λ2, m̄ = m/λ, F̌ (x) = (1 − e−x)/x, σ̄S(x) = λσS(p2) and
σ̄V (x) = λ2 σV (p2). The mass-scale, λ = 0.566 GeV, and parameter valuesr

m̄ b0 b1 b2 b3

0.00897 0.131 2.90 0.603 0.185
, (6.25)

were fixed in a least-squares fit to light-meson observables 126,127. The
dimensionless u = d current-quark mass in Eq. (6.25) corresponds to

m = 5.1MeV , (6.26)

and the parametrisation yields a Euclidean constituent-quark mass,
Eq. (5.55),

ME
u,d = 0.33GeV, (6.27)

which agrees semiquantitatively with that produced by a renormalisation-
group-improved rainbow-ladder truncation based on Eq. (5.51) [see
Eq. (5.56)].

Diquark Bethe-Salpeter amplitudes. The rainbow-ladder DSE trunca-
tion yields asymptotic diquark states in the strong interaction spectrum.
Such states are not observed and their appearance is an artefact of the
truncation. Higher order terms in the quark-quark scattering kernel, whose
analogue in the quark-antiquark channel do not much affect the properties
of vector and flavour non-singlet pseudoscalar mesons, ensure that QCD’s
quark-quark scattering matrix does not exhibit singularities which corre-
spond to asymptotic diquark states.60,63,93,103 Nevertheless, studies with
kernels that do not produce diquark bound states, do support a physical
interpretation of the masses, m(qq)JP

, obtained using the rainbow-ladder
truncation: the quantity l(qq)JP

= 1/m(qq)JP
may be interpreted as a range

over which the diquark correlation can persist inside a baryon. These ob-
servations motivate the Ansatz for the quark-quark scattering matrix that
is employed in deriving the Faddeev equation:

[Gqq(k, q; K)]turs =
∑

JP =0+,1+,...

Γ̄JP

(k;−K)∆JP

(K) ΓJP

(q; K) . (6.28)

One practical means of specifying the ΓJP

in Eq. (6.28) is to employ the
solutions of a rainbow-ladder quark-quark BSE. Using the properties of the
Gell-Mann matrices one finds easily that ΓJP

C := ΓJP

C† satisfies exactly
the same equation as the J−P colour-singlet meson but for a halving of

rε = 10−4 in Eq. (6.23) serves only to decouple the large- and intermediate-p2 domains.
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the coupling strength 102. This makes clear that the interaction in the 3̄c

(qq) channel is strong and attractive.s Moreover, it follows as a feature of
the rainbow-ladder truncation that, independent of the specific form of a
model’s interaction, the calculated masses satisfy

m(qq)JP
> m(q̄q)J−P

. (6.29)

This is a useful guide for all but scalar diquark correlations because the part-
nered mesons in that case are pseudoscalars whose ground state masses, as
we have seen, are constrained to be small by Goldstone’s theorem and which
therefore provide a weak lower bound. For the correlations relevant herein,
models typically give masses (in GeV, recall Eq. (6.3) and the associated
discussion):

m(ud)0+
= 0.74−0.82 , m(uu)1+

= m(ud)1+
= m(dd)1+

= 0.95−1.02 . (6.30)

A solution of the BSE equation requires a simultaneous solution of the
quark-DSE.110 However, since in the model we’re describing the calcula-
tions are simplified by parametrising S(p), that expedient should also be
employed with ΓJP

:

Γ0+
(k; K) =

1
N0+ Ha Ciγ5 iτ2 F̌ (k2/ω2

0+) , (6.31)

tiΓ1+

µ (k; K) =
1

N1+ Ha iγµC ti F̌ (k2/ω2
1+) , (6.32)

with the normalisation, NJP

, fixed by

2 Kµ =
[

∂

∂Qµ
Π(K, Q)

]K2=−m2
JP

Q=K

, (6.33)

where

Π(K, Q) = tr

∫
d4q

(2π)4
Γ̄(q;−K) S(q + Q/2) Γ(q;K)ST(−q + Q/2). (6.34)

These Ansätze retain only that single Dirac-amplitude which would rep-
resent a point particle with the given quantum numbers in a local La-
grangian density: they are usually the dominant amplitudes in a solu-
tion of the rainbow-ladder BSE for the lowest mass JP mesons 61,81,83 and
diquarks.109,110

sThe same analysis shows the interaction to be strong and repulsive in the 6c (qq)
channel.
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Diquark propagators. Solving for the quark-quark scattering matrix us-
ing the rainbow-ladder truncation yields free particle propagators for ∆JP

in Eq. (6.28). Higher order contributions remedy that defect, eliminating
asymptotic diquark states from the spectrum. The attendant modifica-
tion of ∆JP

can be modelled efficiently by simple functions that are free-
particle-like at spacelike momenta but pole-free on the timelike axis (see
the discussion of confinement on page 44); namely,

∆0+
(K) =

1
m2

0+

F̌ (K2/ω2
0+) , (6.35)

∆1+

µν (K) =
(

δµν +
KµKν

m2
1+

)
1

m2
1+

F̌ (K2/ω2
1+) , (6.36)

where the two parameters mJP are diquark pseudoparticle masses and ωJP

are widths characterising ΓJP

. It is useful to require additionally that

d

dK2

(
1

m2
JP

F̌ (K2/ω2
JP )

)−1
∣∣∣∣∣
K2=0

= 1 ⇒ ω2
JP = 1

2
m2

JP , (6.37)

which is a normalisation that accentuates the free-particle-like propagation
characteristics of the diquarks within the hadron.

6.2. Nucleon and ∆ Masses

The Faddeev equations, Eqs. (6.15) & (6.21), are now completely specified.
The three-body problem is intrinsically complex and thus it may appear
to have been a complicated process. However, we have merely combined
existing information about the one- and two-body sectors of QCD.

6.2.1. Meson loops and baryon masses

Before reporting the solution of the Faddeev equation it is worthwhile to
explicate the effect of pseudoscalar meson loops on baryon masses. A thor-
ough discussion is provided in Ref. [107], from which we draw some excerpts.
One can begin with the leading term in a pion-nucleon chiral Lagrangian:t

N̄(x)
[
i 6∂ −M +

g

2M
γ5γ

µ ~τ · ∂µ~π(x) + . . .
]
N(x) . (6.38)

tThat part which describes the pseudoscalar field alone has been neglected. NB. For this
discussion we return to Minkowski metric for ease of comparison with textbook material.
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The rainbow truncation DSE for the nucleon in this theory is

Σ(P ) = 3i
g2

4M2

∫
d4k

(2π)4
∆(k2,m2

π) 6k γ5 G(P − k) 6k γ5 , (6.39)

wherein the nucleon propagator

G(P ) =
1

6P −M − Σ(P )
=: G+(P ) + G−(P ) (6.40)

=
M

ωN (~P )

[
Λ+(~P )

1

P0 − ωN (~P ) + iε
+ Λ−(~P )

1

P0 + ωN (~P )− iε

]
,

(6.41)

with ω2
N (~P ) = ~P 2 + M2, and where Λ±(~P ) = ( 6P̃ ± M)/(2M), P̃ =

(ω(~P ), ~P ), are the Minkowski space positive and negative energy projec-
tion operators, respectively; and the pion propagator (ω2

π(~k) = ~k2 + m2
π)

∆(k2,m2
π) =

1
k2 −m2

π + iε
(6.42)

=
1

2 ωπ(~k)

[
1

k0 − ωπ(~k) + iε
− 1

k0 + ωπ(~k)− iε

]
. (6.43)

(6.44)

As written, the integral in Eq. (6.39) is divergent. It must be regu-
larised to give it meaning. In this case the Poincaré invariant Paul-Villars
procedure is useful. It may be effected by modifying the π-propagator:

∆(k2,m2
π) → ∆̄π(k2) = ∆(k2, m2

π) +
∑

i=1,2

ci ∆(k2, λ2
i ) , (6.45)

and then, with

c1 = − λ2
2 −m2

π

λ2
2 − λ2

1

, c2 =
λ2

1 −m2
π

λ2
2 − λ2

1

, (6.46)

Eq. (6.45) yields

∆̄π(k2) = ∆(k2,m2
π)

∏

i=1,2

(λ2
i −m2

π)∆(k2, λ2
i ) ,

(6.47)

in which case the integrals are convergent for any fixed λ1,2. Furthermore,
for mπ ¿ λ1 → λ2 = λ

∆̄π(k2) = ∆(k2,m2
π)∆2(k2/λ2, 1) (6.48)
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i.e., the Pauli-Villars regularisation is equivalent to employing a monopole
form factor at each πNN vertex: g → g ∆(k2/λ2, 1), where k is the pion’s
momentum. Since this procedure modifies the pion propagator it may be
interpreted as expressing compositeness of the pion and regularising its off-
shell contribution (a related effect is identified in Refs. [128, 129]) but that
interpretation is not unique.

The contribution to the nucleon’s mass from a positive-energy nucleon,
G+(P ), in the loop described by Eq. (6.39) is

δAM+
+ = − 3g2

16M2

∫
d3k

(2π)3
1

ωN

∑

i=0,1,2

ci
λ2

i (ωN −M) + 2~k2(ωλi + ωN )
ωλi [ωλi + ωN −M ]

,

(6.49)
with ωN = ωN (~k2), etc. The connection between this and other mass-shift
calculations can be made transparent by writing Eq. (6.49) in the form

δAM+
+ = − 6π

f2
NNπ

m2
π

∫
d3k

(2π)3
~k2 u2(~k2)

ωπ(~k2)[ωπ(~k2) + ωN (~k2)−M ]
, (6.50)

where f2
NNπ = g2m2

π/(16πM2) and

~k2 u2(~k2) :=
ωλ0

2 ωN
[ωλ0 + ωN −M ]

∑

i=0,1,2

ci
λ2

i (ωN −M) + 2~k2(ωλi + ωN )
ωλi [ωλi + ωN −M ]

.

(6.51)
This is useful because for mπ ¿ λ1 → λ2 = λ; i.e., on the domain in which
Eq. (6.48) is valid, one finds algebraically that

u(~k2) = 1/(1 + ~k2/λ2) , (6.52)

which firmly establishes the qualitative equivalence between Eq. (6.49) and
the calculation, e.g., in Refs. [116, 117].

It is instructive to consider Eq. (6.49) further. Suppose that M is very
much greater than the other scales, then on the domain in which the inte-
grand has significant support

ωN (~k2)−M ≈
~k2

2M
(6.53)

and Eq. (6.49) yields

δAM+
+ ≈ − 3g2

8M2

∫
d3k

(2π)3
~k2

∑

i=0,1,2

ci

ω2
λi

(~k2)
.

It follows that
d2 δAM+

+

(dm2
π)2

≈ − 3g2

4M2

∫
d3k

(2π)3
~k2

ω6
π(~k2)

= − 9
128π

g2

M2

1
mπ

. (6.54)
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Hence on the domain considered,

δAM+
+ = − 3

32π

g2

M2
m3

π + f+
(1)(λ1, λ2)m2

π + f+
(0)(λ1, λ2) , (6.55)

where, as the derivation makes transparent, f(0,1) are scheme-dependent
functions of (only) the regularisation parameters but the first term is
regularisation-scheme-independent. Given that m2

π ∝ m̂, Eq. (5.20), this
first term is nonanalytic in the current-quark mass. It is the leading non-
analytic contribution, a much touted feature of effective field theory, and its
coefficient is fixed by chiral symmetry and the pattern by which that sym-
metry is dynamically broken. NB. The contribution from G−(P ), which
produces the so-called Z-diagram, is suppressed by 1/M .107

While the leading nonanalytic contribution is model-independent, and
thus provides a constraint on models that purport to represent QCD, it
is not of particular quantitative use in this or related studies. The pion
and nucleon are both of finite size and hence the regularisation parameters
λ1,2, which set a compositeness scale for the πNN vertex, must assume
soft values; e.g.,111,113,130 ∼< 600MeV. Therefore the actual value of the
pion-loop contribution to the nucleon’s mass is completely determined by
the regularisation-scheme-dependent terms.

This is thoroughly explored in Ref. [107], wherein a self-consistent solu-
tion of the nucleon’s gap equation shows that the one-loop result is accurate
to within 95%. A full consideration leads to the conclusion that the shift
in the nucleon’s mass owing to the πN -loop is (in GeV, for gA = 1.26):

− δM+ ' (0.039− 0.063) g2
A = (0.061− 0.099) . (6.56)

Thus one arrives at a robust result: the πN -loop reduces the nucleon’s mass
by 100 -200 MeV. Extant calculations; e.g., Refs. [116, 117], show that the
contribution from the analogous π∆-loop is of the same sign and no greater
in magnitude so that the likely total reduction is 200-400 MeV. Based on
these same calculations one anticipates that the ∆ mass is also reduced by
π loops but by a smaller amount (∼ 50 - 100 MeV less).

How is that effect to be incorporated into the quark-diquark picture of
baryons? Reference [107] argued that it may be included by solving the
Faddeev equation with target nucleon and ∆ masses that are inflated to
allow for the loop corrections. Namely, that a physically sensible picture
of the quark-diquark piece of the nucleon can be obtained if its parameters
are chosen not so as to give the experimental masses, but higher values;
e.g., MN = 0.94 + 0.2 = 1.14GeV, M∆ = 1.232 + 0.1 = 1.332GeV.
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Table 3. Mass-scale parameters (in GeV) for the scalar and axial-vector diquark corre-
lations, fixed by fitting nucleon and ∆ masses: Set A provides a fit to the actual masses;
whereas Set B provides masses that are offset to allow for “pion cloud” contributions,
Sec. 6.2.1. Also listed is ωJP = mJP /

√
2, which is the width-parameter in the (qq)JP

Bethe-Salpeter amplitude, Eqs. (6.31) & (6.32): its inverse is an indication of the diquark’s
matter radius. Sets A∗ and B∗ illustrate effects of omitting the axial-vector diquark cor-
relation: the ∆ cannot be formed and MN is significantly increased. It is thus plain that
the axial-vector diquark provides significant attraction in the Faddeev equation’s kernel.
(Adapted from Ref. [132].)

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)
B 1.18 1.33 0.79 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)
A∗ 1.15 0.63 0.44=1/(0.45 fm)
B∗ 1.46 0.79 0.56=1/(0.35 fm)

6.2.2. N and ∆ masses from the Faddeev equation

The method described in Ref. [131] is effective for solving Eqs. (6.15) &
(6.21). Owing to Eq. (6.37), the masses of the scalar and axial-vector di-
quarks are the only variable parameters in the kernels of the Faddeev equa-
tions. It is natural to choose the axial-vector mass so as to obtain a desired
mass for the ∆, and set the scalar mass subsequently by requiring a partic-
ular nucleon mass. Two primary parameter sets are presented in Table 3.
Set A is obtained by requiring a precise fit to the experimental nucleon and
∆ masses, while Set B was obtained by fitting to nucleon and ∆ masses
that are inflated so as to allow for the additional attractive contribution
from the pion cloud, as described in Sec. 6.2.1.

It is apparent in Table 3 that a baryon’s mass increases with increas-
ing diquark mass, and the fitted diquark mass-scales are commensurate
with the anticipated values, cf. Eq. (6.30), with Set B in better accord.
If coupling to the axial-vector diquark channel is omitted from Eq. (6.15),
then MSet A

N = 1.15GeV and MSet B
N = 1.46GeV, rows labelled A∗, B∗,

respectively. It is thus clear that axial-vector diquark correlations provide
significant attraction in the nucleon. Of course, using the Faddeev equa-
tion approach, the ∆ does not exist without axial-vector correlations. In
Set B the amount of attraction provided by axial-vector correlations must
be matched by that provided by the pion cloud. This highlights the con-
structive interference between the contribution of these two effects to a
baryons’ mass. It is related and noteworthy that m1+ −m0+ is only a rea-
sonable approximation to M∆−MN = 0.29GeV when pion cloud effects are
ignored: Set A, m1+ −m0+ = 0.21GeV cf. Set B, m1+ −m0+ = 0.10GeV.
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Plainly, understanding the N -∆ mass splitting requires more than merely
reckoning the mass-scales of constituent degrees of freedom. It is curious
that for Set B the matter radius, 1/ωJP , of the diquarks is smaller than for
Set A. One might view this as a contraction in the hadron’s quark-core in
response to the presence of a longer range pion cloud.

6.3. Nucleon Electromagnetic Form Factors

6.3.1. Nucleon-photon vertex

The nucleon’s electromagnetic current is given in Eq. (3.6), which introduces
the Dirac and Pauli form factors, and also the electric and magnetic form
factors, which are related to the electric-charge-density distribution and
the magnetic-current-density distribution. In Eq. (3.6), Λµ is the nucleon-
photon vertex. It may be constructed following the systematic procedure of
Ref. [134]. That approach has the merit of automatically providing a con-
served current for on-shell nucleons described by the Faddeev amplitudes
which are obtained simultaneously with the mass. Moreover, the canonical
normalisation condition for the nucleons’ Faddeev amplitude is equivalent
to requiring F1(Q2 = 0) = 1 for the proton. The vertex has six terms,
which are depicted in Fig. 19. Hereafter we describe them briefly. A full
explanation is provided in Ref. [135].

Diagram 1. This represents the photon coupling directly to the by-
stander quark. It is a necessary condition for current conservation that the
dressed-quark-photon vertex satisfy the Ward-Takahashi identity:

Qµ iΓµ(`1, `2) = S−1(`1)− S−1(`2) , (6.57)

where Q = `1 − `2 is the photon momentum flowing into the vertex. Since
the quark is dressed, Sec. 6.1.1, the vertex cannot be bare; i.e., Γµ(`1, `2) 6=
γµ. It can be obtained by solving Eq. (5.32), which was the procedure
employed in Sec. 5.2.1. However, since S(p) is parametrised, Ref. [136] can
be followed and the vertex written 137

iΓµ(`1, `2) = iΣA(`21, `
2
2) γµ + 2kµ

[
iγ · kµ ∆A(`21, `

2
2) + ∆B(`21, `

2
2)

]
; (6.58)

with k = (`1 + `2)/2 and

ΣF (`21, `
2
2) = 1

2
[F (`21) + F (`22)] , ∆F (`21, `

2
2) =

F (`21)− F (`22)
`21 − `22

, (6.59)

where F = A, B; viz., the scalar functions in Eq. (4.3). It is critical that
Γµ in Eq. (6.58) satisfies Eq. (6.57) and very useful that it is completely
determined by the dressed-quark propagator.
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Figure 19. Nucleon-photon vertex which ensures a conserved current for on-shell nucle-
ons described by the Faddeev amplitudes, Ψi,f , calculated in Sec. 6.2.2. The single line
represents S(p), the dressed-quark propagator, the double line, the diquark propagator,
and Γ is the diquark Bethe-Salpeter amplitude, all of which are described in Sec. 6.1.1.
Aspects of the remaining vertices are described in Sec. 6.3: the top-left image is dia-
gram 1; the top-right, diagram 2; and so on, with the bottom-right image, diagram 6.
(Adapted from Ref. [135].)

Diagram 2. This represents the photon coupling directly to a diquark
correlation. In the case of a scalar correlation, the general form of the
diquark-photon vertex is

Γ0+

µ (`1, `2) = 2 kµ f+(k2, k ·Q, Q2) + Qµ f−(k2, k ·Q, Q2) , (6.60)

and it must satisfy the Ward-Takahashi identity:

Qµ Γ0+

µ (`1, `2) = Π0+
(`21)−Π0+

(`22) , ΠJP

(`2) = {∆JP

(`2)}−1. (6.61)

The adaption of Eq. (6.58) to this case is

Γ0+

µ (`1, `2) = kµ ∆Π0+ (`21, `
2
2) , (6.62)

with the definition of ∆Π0+ (`21, `
2
2) apparent from Eq. (6.59). Equa-

tion (6.62) is the minimal Ansatz that: satisfies Eq. (6.61); is completely
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determined by quantities introduced already; and is free of kinematic sin-
gularities. It also guarantees a valid normalisation of electric charge; viz.,

lim
`′→`

Γ0+

µ (`′, `) = 2 `µ
d

d`2
Π0+

(`2) `2∼0= 2 `µ , (6.63)

owing to Eq. (6.37). NB. The fractional diquark charge has been factored.
It therefore appears subsequently as a simple multiplicative factor.

For the case in which the struck diquark correlation is axial-vector,
the vertex structure is more involved. Nonetheless, there are many con-
straints that may be employed to build a realistic Ansatz. That composed in
Ref. [135] has two parameters: the magnetic dipole and electric quadrupole
moments of the axial-vector diquark, µ1+ and χ1+ , respectively.

Diagram 3. This image depicts a photon coupling to the quark that is
exchanged as one diquark breaks up and another is formed. While this is
the first two-loop diagram in the current, no new elements appear in its
specification: the quark-photon vertex was described above. It is notewor-
thy that the process of quark exchange provides the attraction necessary in
the Faddeev equation to bind the baryon. It also guarantees that the Fad-
deev amplitude has the correct antisymmetry under the exchange of any
two dressed-quarks. This key feature is absent in models with elementary
(noncomposite) diquarks.

Diagram 4. This differs from Diagram 2 in expressing the contribution
to a nucleon’s form factors owing to an electromagnetically induced tran-
sition between scalar and axial-vector diquarks. The transition vertex is a
rank-2 pseudotensor, kindred to the matrix element describing the ρ γ∗π0

transition 78, and can therefore be expressed

Γγα
SA(`1, `2) = −Γγα

AS(`1, `2) =
i

MN
Ť (`1, `2) εγαρλ`1ρ`2λ , (6.64)

where γ, α are, respectively, the vector indices of the photon and axial-
vector diquark. For simplicity, Ref. [135] proceeded under the assumption

Ť (`1, `2) = κŤ ; (6.65)

viz., a constant, for which a typical value is 111:

κŤ ∼ 2 . (6.66)

In the nucleons’ rest frame, a conspicuous piece of the Faddeev ampli-
tude that describes an axial-vector diquark inside the bound state can be
characterised as containing a bystander quark whose spin is antiparallel to
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that of the nucleon, with the axial-vector diquark’s parallel. The interac-
tion pictured in this diagram does not affect the bystander quark but the
transformation of an axial-vector diquark into a scalar effects a flip of the
quark spin within the correlation. After this transformation, the spin of the
nucleon must be formed by summing the spin of the bystander quark, which
is still aligned antiparallel to that of the nucleon, and the orbital angular
momentum between that quark and the scalar diquark.u Diagram 4 may
therefore be expected to impact strongly on the nucleons’ magnetic form
factors.
Diagram 5 and 6. These two-loop diagrams are the so-called “seagull”
terms, which appear as partners to Diagram 3 and arise because binding
in the nucleons’ Faddeev equations is effected by the exchange of nonpoint-
like diquark correlations 134. The new elements in these diagrams are the
couplings of a photon to two dressed-quarks as they either separate from
(Diagram 5) or combine to form (Diagram 6) a diquark correlation. As
such they are components of the five point Schwinger function which de-
scribes the coupling of a photon to the quark-quark scattering kernel. This
Schwinger function could be calculated, as is evident from the recent com-
putation of analogous Schwinger functions relevant to meson observables.88

However, such a calculation provides valid input only when a uniform trun-
cation of the DSEs has been employed to calculate each of the elements
described hitherto. In the present context, it is appropriate instead to em-
ploy the algebraic parametrisation of Ref. [134], which is simple, completely
determined by the elements introduced already, and guarantees current con-
servation for on-shell nucleons.

6.3.2. Calculated results

In order to place the calculation of baryon observables on the same footing
as the study of mesons, the proficiency evident in Ref. [38] will need to
be applied to every line and vertex that appears in Fig. 19. While that is
feasible, it remains to be done. In the meantime, we relate a study whose
merits include a capacity to: explore the potential of the Faddeev equation
truncation of the baryon three-body problem; and elucidate the role of

uA less prominent component of the amplitude has the bystander quark’s spin parallel
to that of the nucleon while the axial-vector diquark’s is antiparallel: this q↑ ⊕ (qq)↓

1+

system has one unit of angular momentum. That momentum is absent in the q↑⊕(qq)0+

system. Other combinations also contribute via Diagram 3 but all mediated processes
inevitably require a modification of spin and/or angular momentum.
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additional correlations, such as those associated with pseudoscalar mesons.
It is worthwhile to epitomise the input before presenting results. One

element is the dressed-quark propagator, Sec. 6.1.1. The form used 126 both
anticipated and expresses the features that are now known to be true44,49.
It carries no free parameters, because its behaviour was fixed in analyses of
meson observables, and is basic to a description of light- and heavy-quark
mesons that is accurate to better than 10%.69

The nucleon is supposed at heart to be composed of a dressed-quark
and nonpointlike diquark with binding effected by an iterated exchange
of roles between the bystander and diquark-participant quarks. The pic-
ture is realised via a Poincaré covariant Faddeev equation, Sec. 6.1, which
incorporates scalar and axial-vector diquark correlations. There are two
parameters, Sec. 6.2.2: the mass-scales associated with these correlations.
They were fixed by fitting to specified nucleon and ∆ masses. There are no
free parameters at this point.

With the constituents and the bound states’ structure defined, only
a specification of the nucleons’ electromagnetic interaction remained. Its
formulation, sketched in Sec. 6.3.1, is guided almost exclusively by a re-
quirement that the nucleon-photon vertex satisfy a Ward-Takahashi iden-
tity. Since the scalar diquark’s electromagnetic properties are readily re-
solved, the result, Fig. 19, depends on three parameters that are all tied
to properties of the axial-vector diquark correlation: µ1+ & χ1+ , respec-
tively, the axial-vector diquarks’ magnetic dipole and electric quadrupole
moments; and κŤ , the strength of electromagnetic axial-vector ↔ scalar di-
quark transitions. Hence, the study of Ref. [135] exhibits and interprets the
dependence of the nucleons’ form factors on these three parameters, and
also on the nucleons’ intrinsic quark structure as expressed in the Poincaré
covariant Faddeev amplitudes.

Table 4 lists results for the nucleons’ magnetic moments, GN
M (0), where

N = n, p.135 It indicates that the moments are insensitive to the axial-
vector diquarks’ quadrupole moment but react to the diquarks’ magnetic
moment, increasing quickly in magnitude as µ1+ increases. As anticipated
in connection with Eq. (6.66), the nucleons’ moments respond strongly to
alterations in the strength of the scalar↔ axial-vector transition, increasing
rapidly as κŤ is increased. Set A, which is fitted to the experimental values
of MN & M∆, describes the nucleons’ moments quite well: κp is 15% too
large; and |µn|, 16% too small. On the other hand, Set B, which is fitted to
baryon masses that are inflated so as to make room for pion cloud effects,
overestimates κp by 47% and |µn| by 18%.
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Table 4. Magnetic moments, in nuclear magnetons, calculated with the diquark
mass-scales in Table 3 for a range of axial-vector-diquark–photon vertex parameters,
centred on the point-particle values of µ1+ = 2 & χ1+ = 1, and κŤ = 2, Eq. (6.66).
Columns labelled σ give the percentage-difference from results obtained with the refer-
ence parameters. Experimental values are: κp := µp−1 = 1.79 & µn = −1.91. (Adapted
from Ref. [135].)

Set A Set B

µ1+ χ1+ κŤ κp σA
κp

|µn| σA
|µn| κp σB

κp
|µn| σB

|µn|
1 1 2 1.79 -15.3 1.70 -5.1 2.24 -21.9 2.00 -6.2
2 1 2 2.06 1.79 2.63 2.13
3 1 2 2.33 15.4 1.88 5.1 3.02 21.9 2.26 6.1
2 0 2 2.06 0.0 1.79 0.0 2.63 0.0 2.13 0.0
2 2 2 2.06 0.0 1.79 0.0 2.63 0.0 2.13 0.0
2 1 1 1.91 -8.4 1.64 -8.4 2.45 -10.1 1.95 -8.5
2 1 3 2.21 8.4 1.85 8.3 2.82 10.1 2.31 8.5

The nucleons’ charge and magnetic radii

r2
N := − 6

d

ds
ln GN

E (s)
∣∣∣∣
s=0

, (rµ
N )2 := − 6

d

ds
ln GN

M (s)
∣∣∣∣
s=0

, (6.67)

were also reported in Ref. [135]. The charge radii, particularly that of the
neutron, were most sensitive to changes in the axial-vector diquarks’ electric
quadrupole moment, χ1+ . That is not surprising given that χ1+ is the only
model parameter which speaks directly of the axial-vector diquarks’ electric
charge distribution. With the point-particle reference values of µ1+ = 2 &
χ1+ = 1, and κŤ = 2, Set A underestimates the proton radius by 30%
and the magnitude of the neutron radius by 43%, while for Set B these
differences are 32% and 50%, respectively. The magnetic radii are insen-
sitive to the axial-vector diquarks’ quadrupole moment but react to the
diquarks’ magnetic moment as one would anticipate: increasing in magni-
tude as µ1+ increases. Moreover, again consistent with expectation, these
radii respond to changes in κŤ , decreasing as this parameter is increased.
With the reference parameters values both Sets A & B underestimate rµ

N

by approximately 40%.
Nucleon electromagnetic form factors associated with the tabulated val-

ues of static properties are presented in Fig. 20. The figure confirms and
augments the information in Table 4. Consider, e.g., the electric form fac-
tors. One observes that the differences between results obtained with Set A
and Set B generally outweigh those delivered by variations in the param-
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Figure 20. Response of nucleon form factors to variations in the magnetic moment of
the axial-vector diquark: µ1+ = 1, 2, 3; with χ1+ = 1, κŤ = 2. The legend in the top-left
panel applies to all; the dashed-line marked by “∗” is a fit to experimental data 138 and
the dashed-line marked by “+” in the lower-left panel is the fit to Gn

E(Q2) of Ref. [139];
and the horizontal lines in the right panels mark the experimental value of the nucleon’s
magnetic moment. (Adapted from Ref. [135].)

eters characterising the axial-vector diquark’s electromagnetic properties.
The proton’s electric form factor, in particular, is largely insensitive to
these parameters. The nucleons’ magnetic form factors exhibit the greatest
sensitivity to the axial-vector diquarks’s electromagnetic properties but in
this case, too, the differences between Set A and Set B are more significant.
For Q2 & 4 GeV2 there is little sensitivity to the diquarks’ electromag-
netic parameters in any curve because the model expresses the diquark
current’s perturbative limit.140 It is thus apparent from these plots that
the behaviour of the nucleons’ form factors is primarily determined by the
information encoded in the Faddeev amplitudes.

The results show that the nucleons’ electromagnetic properties are sen-
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sitive to the strength of axial-vector diquark correlations in the bound state
and react to the electromagnetic properties of these correlations. In all cases
the dependence is readily understood intuitively. However, taken together
the results indicate that one cannot readily tune the model’s parameters to
provide a uniformly good account of nucleon properties: something more
than dressed-quark and -diquark degrees of freedom is required.

6.3.3. Chiral corrections

It is appropriate now to examine effects that arise through coupling to
pseudoscalar mesons. As with baryon masses, Sec. 6.2.1, there are two
types of contributions to electromagnetic form factors from meson loops:
regularisation-scheme-dependent terms, which are analytic in the neigh-
bourhood of m̂ = 0; and nonanalytic scheme-independent terms. For nu-
cleon static properties presented the leading-order scheme-independent con-
tributions are 141

〈r2
p
n
〉1−loop
NA = ∓ 1 + 5g2

A

32π2f2
π

ln(
m2

π

M2
N

) , (6.68)

〈(rµ
N )2〉1−loop

NA = − 1 + 5g2
A

32π2f2
π

ln(
m2

π

M2
N

) +
g2

A MN

16πf2
πµv

1
mπ

, (6.69)

(µ p
n
)1−loop
NA = ∓ g2

A MN

4π2f2
π

mπ , (6.70)

where gA = 1.26, fπ = 0.0924GeV = 1/(2.13 fm), µv = µp−µn. Clearly, the
radii diverge in the chiral limit, a much touted aspect of chiral corrections.
While these scheme-independent terms are immutable, at physical values
of the pseudoscalar meson masses they do not usually provide the domi-
nant contribution to observables: that is provided by the regularisation-
parameter-dependent terms, as we saw, e.g., with the masses in Sec. 6.2.1.

Since regularisation-parameter-dependent parts of the chiral loops are
important it is sensible to follow Ref. [142] and estimate the corrections
using modified formulae that incorporate a single parameter which mim-
ics the effect of regularisation-dependent contributions from the integrals.
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Table 5. Row 1 – static properties calculated with Set B diquark masses, Table 3, and
µ1+ = 2, χ1+ = 1, κŤ = 2: charge radii in fm, with rn := −

√
−〈r2

n〉; and magnetic
moments in nuclear magnetons. Row 2 adds the corrections of Eqs. (6.71)–(6.73) with
λ = 0.3GeV. ς in row n, is the rms relative-difference between the entries in rows n and
3. (Adapted from Ref. [135].)

rp rn rµ
p rµ

n µp −µn ς

q-(qq) core 0.595 0.169 0.449 0.449 3.63 2.13 0.39
+π-loop correction 0.762 0.506 0.761 0.761 3.05 1.55 0.23
experiment 0.847 0.336 0.836 0.889 2.79 1.91

Thus Eqs. (6.68) – (6.70) are rewritten

〈r2
p
n
〉1−loopR

NA = ∓ 1 + 5g2
A

32π2f2
π

ln(
m2

π

m2
π + λ2

) , (6.71)

〈(rµ
N )2〉1−loopR

NA = − 1 + 5g2
A

32π2f2
π

ln(
m2

π

m2
π + λ2

) +
g2

A MN

16πf2
πµv

1
mπ

2
π

arctan(
λ

mπ
) ,

(6.72)

(µ p
n
)1−loopR

NA = ∓ g2
A MN

4π2f2
π

mπ
2
π

arctan(
λ3

m3
π

) , (6.73)

wherein λ is a regularisation mass-scale, for which a typical value is 142

∼ 0.4GeV. NB. The loop contributions vanish when the pion mass is much
larger than the regularisation scale, as required: very massive states must
decouple from low-energy phenomena.

One may now return to the calculated values of the nucleons’ static
properties. Consider the Set B results obtained with µ1+ = 2, χ1+ = 1,
κŤ = 2. Set B was chosen to give inflated values of the nucleon and ∆
masses in order to make room for chiral corrections, and therefore one
may consistently apply the corrections in Eqs. (6.71) – (6.73) to the static
properties. With λ = 0.3GeV this yields the second row in Table 5: the
regularised chiral corrections reduce the rms relative-difference significantly.

This crude analysis, complementing Sec. 6.2.1, suggests strongly that a
veracious description of baryons can be obtained using dressed-quark and -
diquark degrees of freedom augmented by a sensibly regulated pseudoscalar
meson cloud. The inverse of the regularisation parameter is a length-scale
that may be viewed as a gauge of the distance from a nucleon’s centre-of-
mass to which the pseudoscalar meson cloud penetrates: 1/λ ≈ 2

3 fm is an
intuitively reasonable value that indicates the cloud is expelled from the
nucleon’s core but materially affects its properties at distances ∼> rp; viz.,
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Figure 21. Form factor ratio: µp Gp
E(Q2)/Gp

M (Q2). Calculated results: lower band
- Set A in Table 3; and upper band - Set B. For both, Gp

E(Q2) was calculated using
the point-particle values: µ1+ = 2 & χ1+ = 1, and κŤ = 2; i.e., the reference values
in Table 4. Changes in the axial-vector diquark parameters used to evaluate Gp

E have
little effect on the plotted results. The width of the bands reflects the variation in Gp

M
with axial-vector diquark parameters. In both cases, the upper border is obtained with
µ1+ = 3, χ1+ = 1 and κŤ = 2, while the lower has µ1+ = 1. The data are: squares -
Ref. [27]; diamonds - Ref. [29]; and circles - Ref. [26]. (Adapted from Ref. [135].)

in the vicinity of the nucleon’s surface and farther out.

6.3.4. Form factor ratios

We are now in a position to return to our discussion of Fig. 4, and in Fig. 21
plot the calculated ratio µp Gp

E(Q2)/Gp
M (Q2). The behaviour of the exper-

imental data at small Q2 is now readily understood. In the neighbourhood
of Q2 = 0,

µp
Gp

E(Q2)
Gp

M (Q2)
Q2∼0
= 1− Q2

6
[
(rp)2 − (rµ

p )2
]

, (6.74)

and because experimentally rp ≈ rµ
p the ratio varies by less than 10% on

0 < Q2 < 0.6GeV2, if the form factors are approximately dipole. In the
calculation described herein, rp > rµ

p without chiral corrections. Hence the
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ratio must fall immediately with increasing Q2. Incorporating pion loops,
one obtains the results in Row 2 of Table 5, which have rp ≈ rµ

p . The small
Q2 (long-range) behaviour of this ratio is thus materially affected by the
proton’s pion cloud.

We have emphasised that true pseudoscalar mesons are not pointlike and
therefore pion cloud contributions to form factors diminish in magnitude
with increasing Q2. To exemplify this further, it is notable that in a study
of the γN → ∆ transition,143 pion cloud contributions to the M1 form
factor fall from 50% of the total at Q2 = 0 to ∼< 10% for Q2 & 2 GeV2.
Hence, the evolution of µp Gp

E(Q2)/Gp
M (Q2) on Q2 & 2GeV2 is primarily

determined by the quark core of the proton. This is evident in Fig. 21, which
illustrates that, on Q2 ∈ (1, 5)GeV2, µp Gp

E(Q2)/Gp
M (Q2) is sensitive to the

parameters defining the axial-vector-diquark–photon vertex. The response
diminishes with increasing Q2 because the representation of the diquark
current expresses the perturbative limit.

The behaviour of µp Gp
E(Q2)/Gp

M (Q2) on Q2 & 2 GeV2 is determined
either by correlations expressed in the Faddeev amplitude, the electromag-
netic properties of the constituent degrees of freedom, or both. The issue
is decided by the fact that the magnitude and trend of the results are not
materially affected by the axial-vector-diquarks’ electromagnetic parame-
ters. This observation suggests strongly that the ratio’s evolution is due
primarily to spin-isospin correlations in the nucleon’s Faddeev amplitude.
It is notable that while Set A is ruled out by the data, Set B, which antici-
pates pion cloud effects, is in reasonable agreement with both the trend and
magnitude of the polarisation transfer data 27,28,29. NB. Neither this nor
the Rosenbluth 26 data played any role in developing the Faddeev equation
and nucleon current. The agreement between calculation and experiment
therefore yields clear understanding.v

The calculation is extended to larger Q2 in Ref. [145], with a prediction
that the ratio will pass through zero at Q2 ≈ 6.5GeV2. Experiments are
planned at JLab that within three years will test this prediction. If one
adheres to a simple interpretation of Gp

E(Q2) as a Fourier-transform of the
electric charge distribution within a proton, then the meaning of a zero

vIt is currently believed that the discrepancy between the two classes of experiment may
be removed by the inclusion of two-photon exchange contributions in the analysis of the
ep scattering cross-section; i.e., by improving on the Born approximation. Estimates
indicate that such effects materially reduce the magnitude of the ratio inferred from
Rosenbluth separation and slightly increase that inferred from the polarisation transfer
measurements.144
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Figure 22. Three dimensional Fourier transform of a dipole charge distribution com-
pared with that of a distribution which exhibits a zero; viz., (1 − aQ2/m2

D)/(1 +
Q2/m2

D)3, where mD is the dipole mass and a = 0.1. The zero indicates a depletion
of charge at r = 0, and its relocation to larger r. This profile is familiar from nuclear
physics: correlations in the proton wave functions of nuclei effect a similar redistribution
of charge.146

in this form factor is depicted in Fig. 22: it corresponds to a depletion of
electric charge at the heart of the nucleon. The distribution of magnetic
current exhibits no such effect. While this picture is not truly valid because
the zero appears far into the relativistic domain, the parallel it draws be-
tween the effects of correlations in the wave functions of nuclei and those
within the nucleon’s Faddeev amplitude are useful.

In Fig. 23 we plot a weighted ratio of Pauli and Dirac form factors. A
perturbative QCD analysis 147 that considers effects arising from both the
proton’s leading- and subleading-twist light-cone wave functions, the latter
of which represents quarks with one unit of orbital angular momentum,
suggests

Q2

[lnQ2/Λ2]2
F2(Q2)
F1(Q2)

= constant, Q2 À Λ2 , (6.75)

where Λ is a mass-scale that corresponds to an upper-bound on the domain
of soft momenta. An argument may be made that a judicious estimate of
the least-upper-bound on this domain is 135 Λ = M . The figure hints that
Eq. (6.75) may be valid for Q2 ∼> 6GeV2. NB. The model for the nucleon
and its current reviewed herein is consistent with quark counting rules,
albeit neglecting the anomalous dimensions that arise via renormalisation.
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Figure 23. Weighted proton Pauli/Dirac form factor ratio, calculated with Λ =
0.94GeV. The data are described in Fig. 21. The band was calculated using the point-
particle values: µ1+ = 2 and χ1+ = 1, and κŤ = 2. Here the upper border is obtained
with µ1+ = 1, χ1+ = 1 and κŤ = 2, and the lower with µ1+ = 3. (Adapted from
Ref. [145].)

However, they were also omitted in deriving Eq. (6.75).
We reiterate that orbital angular momentum is not a Poincaré invariant.

However, if absent in a particular frame, it will in general appear in another
frame related via a Poincaré transformation. Nonzero quark orbital angu-
lar momentum is a necessary outcome of a Poincaré covariant description,
and a nucleon’s covariant Faddeev amplitude possesses structures that cor-
respond in the rest frame to s-wave, p-wave and even d-wave components.
The result in Fig. 23 is not significantly influenced by details of the diquarks’
electromagnetic properties. Instead, the behaviour is primarily governed by
correlations expressed in the proton’s Faddeev amplitude and, in particu-
lar, by the amount of intrinsic quark orbital angular momentum.136 NB.
This phenomenon is analogous to that observed in connection with the
pion’s electromagnetic form factor. In that instance the so-called axial-
vector components of the pion’s Bethe-Salpeter amplitude, Eqs. (5.16) &
(5.17), are responsible for the large Q2 behaviour of the form factor: they
alone ensure Q2Fπ(Q2) ≈ constant for truly ultraviolet momenta,65 which
is the result anticipated from perturbative QCD.148 These components are
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required by covariance 64 and signal the presence of quark orbital angular
momentum in the pseudoscalar pion.

7. Epilogue

Protons and neutrons are the seeds of all the universe’s observable matter.
The standard model of particle physics is supposed to explain their proper-
ties. However, this theory’s perturbative formulation fails spectacularly to
account for even the simplest bulk properties. Two fundamental, emergent
phenomena are responsible: confinement and dynamical chiral symmetry
breaking. Their importance is difficult to overestimate. They determine
which chemical elements are stable and hence influence even the existence
of life.

Dynamical chiral symmetry breaking (DCSB) is a singularly effective
mass generating mechanism. It can take the almost massless light-quarks
of perturbative QCD and turn them into the massive constituent-quarks
whose mass sets the scale which characterises the spectrum of the strong
interaction accessible at JLab. The phenomenon is understood via QCD’s
gap equation, the solution of which delivers a quark mass function with a
momentum-dependence that connects the perturbative and nonperturba-
tive, constituent-quark domains.

Despite the fact that light-quarks are made heavy, the mass of the pseu-
doscalar mesons remains unnaturally small. That, too, owes to DCSB,
expressed this time in a remarkable relationship between QCD’s gap equa-
tion and those colour singlet Bethe-Salpeter equations which have a pseu-
doscalar projection. Goldstone’s theorem is a natural consequence of this
connection.

These features may only be veraciously understood in relativistic quan-
tum field theory. They can be viewed as an essential consequence of the
presence and role of particle-antiparticle pairs in an asymptotically free
theory. This is apparent via a self-consistent solution of the appropriate
Dyson-Schwinger equations (DSEs), which wrap each of QCD’s elementary
excitations in a cloud of virtual particles that is exceedingly dense at low
momentum.

Indeed, the DSEs provide a natural framework for the exploration of
QCD’s emergent phenomena. They are a generating tool for perturba-
tion theory and thus give a clean connection with processes that are well
understood. Moreover, they admit a systematic, symmetry preserving and
nonperturbative truncation scheme, and thereby give access to strong QCD
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in the continuum. On top of this, a quantitative comparison and feedback
between DSE and lattice-QCD studies is today proving fruitful.

The existence of a sensible truncation scheme enables the proof of ex-
act results using the DSEs. That the truncation scheme is also tractable
provides a means by which the results may be illustrated, and furthermore
a practical tool for the prediction of observables that are accessible at con-
temporary experimental facilities. The consequent opportunities for rapid
feedback between experiment and theory brings within reach an intuitive
understanding of nonperturbative strong interaction phenomena.

Modern, high-luminosity experimental facilities employ large momen-
tum transfer reactions to probe the structure of hadrons. They are provid-
ing remarkable and intriguing new information. For an example one need
only look so far as the discrepancy between the ratio of electromagnetic
proton form factors extracted via Rosenbluth separation and that inferred
from polarisation transfer. This discrepancy is marked for Q2 ∼> 2GeV2 and
grows with increasing Q2. At such values of momentum transfer, Q2 > M2,
where M is the nucleon’s mass, a true understanding of these and other
contemporary data require a Poincaré covariant description of the nucleon.
This can be obtained with a Faddeev equation that describes a baryon
as composed primarily of a quark core, constituted of confined quark and
confined diquark correlations, but augmented by pseudoscalar meson cloud
contributions that are sensed by long wavelength probes. Short wavelength
probes pierce the cloud, and expose spin-isospin correlations and quark or-
bital angular momentum within the baryon. The veracity of the elements
in this description makes plain that a picture of baryons as a bag of three
constituent-quarks is profoundly misleading.

While there are indications that confinement may be expressed in the
analyticity properties of the dressed propagators, one cannot say that it
is understood. Consequently, one pressing task, to which the methods de-
scribed herein can be applied, is the drawing of an accurate map of the
confinement force between light-quarks within mesons. This will enable a
clear connection to be established between this force and the realisation
of dynamical chiral symmetry breaking, and an accounting of the distribu-
tion of mass within mesons. In addition one may then begin to determine
whether the confinement force-field can be excited to produce exotic sys-
tems of light-quarks and glue. The same must be done for baryons, but
here the difficulties are greater because one is confronted with a Poincaré
covariant three-body problem. New and improved tools must be developed,
which may extend beyond a rigorous grounding of the Faddeev equation.
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It is also crucial to develop the tools necessary for charting the pointwise
distribution of quarks and gluons within hadrons. With such in hand,
one might lay out and apportion the pointwise distribution of mass within
the hadron, and its evolution with the resolving scale of the probe. That
knowledge could be used to elucidate the impact of confinement and DCSB
on these distributions; e.g., by exhibiting the effects of quenching these
emergent phenomena.

It should now be plain that contemporary nuclear physics poses nu-
merous challenges and may reasonably be expected to provide many new
surprises.
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Appendix A. Euclidean Space

It is possible to view the Euclidean formulation of a quantum field theory
as definitive.55,149,150,151 That decision is crucial when a consideration of
nonperturbative effects becomes important. In addition, the discrete lattice
formulation in Euclidean space has allowed some progress to be made in
attempting to answer existence questions for interacting gauge field theo-
ries. NB. A lattice formulation is impossible in Minkowski space because
the integrand is not non-negative and hence does not provide a probability
measure. An heuristic exposition of probability measures in quantum field
theory can be found in Ref. [152], Chap. 6, while Ref. [55], Chaps. 3 and 6,
provides a more rigorous discussion in the context of quantum mechanics
and quantum field theory.

Our Euclidean conventions are easily made plain. For 4-vectors a, b:

a · b := aµ bν δµν :=
4∑

i=1

ai bi , (A.1)

where δµν is the Kronecker delta and the metric tensor. Hence, a spacelike
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vector, Qµ, has Q2 > 0. The Dirac matrices are Hermitian and defined by
the algebra

{γµ, γν} = 2 δµν . (A.2)

We use

γ5 := − γ1γ2γ3γ4 , (A.3)

so that

tr [γ5γµγνγργσ] = −4 εµνρσ , ε1234 = 1 . (A.4)

A Dirac-like representation of these matrices is:

~γ =
(

0 −i~τ

i~τ 0

)
, γ4 =

(
τ0 0
0 −τ0

)
, (A.5)

where the 2× 2 Pauli matrices are:

τ0 =
(

1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0
0 −1

)
. (A.6)

It is possible to derive the Euclidean version of every equation intro-
duced above assuming certain analytic properties of the integrands. How-
ever, the derivations can be sidestepped using the following transcription
rules:

Configuration Space

(1)
∫ M

d4xM → −i

∫ E

d4xE

(2) /∂ → iγE · ∂E

(3) /A → −iγE ·AE

(4) AµBµ → −AE ·BE

(5) xµ∂µ → xE · ∂E

Momentum Space

(1)
∫ M

d4kM → i

∫ E

d4kE

(2) /k → −iγE · kE

(3) /A → −iγE ·AE

(4) kµqµ → −kE · qE

(5) kµxµ → −kE · xE

These rules are valid in perturbation theory; i.e., the correct Euclidean
space integral for a given diagram will be obtained by applying these rules
to the Minkowski integral. The rules take account of the change of variables
and Wick rotation of the contour. When one begins with Euclidean space,
as we do, the reverse is also true. However, for diagrams that represent
DSEs which involve dressed n-point functions, whose analytic structure
is not known a priori, the Minkowski space equation obtained using this
prescription will have the right appearance but it’s solutions may bear
no relation to the analytic continuation of the solution of the Euclidean
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equation. Any such differences will be nonperturbative in origin. It is this
fact that makes a choice of metric crucial at the outset.

To return to practical matters, a positive energy spinor satisfies

ū(P, s) (iγ · P + M) = 0 = (iγ · P + M)u(P, s) , (A.7)

where M is the mass obtained by solving the Faddeev equation and s = ±
is the spin label. The spinor is normalised:

ū(P, s)u(P, s) = 2M , (A.8)

and may be expressed explicitly:

u(P, s) =
√

M − iĚ




χs

~σ · ~P

M − iĚ
χs


 , (A.9)

with Ě = i
√

~P 2 + M2,

χ+ =
(

1
0

)
, χ− =

(
0
1

)
. (A.10)

For the free-particle spinor, ū(P, s) = u(P, s)†γ4.
The spinor can be used to construct a positive energy projection oper-

ator:

Λ+(P ) :=
1

2M

∑
s=±

u(P, s) ū(P, s) =
1

2M
(−iγ · P + M) . (A.11)

A negative energy spinor satisfies

v̄(P, s) (iγ · P −M) = 0 = (iγ · P −M) v(P, s) , (A.12)

and possesses properties and satisfies constraints obtained via obvious anal-
ogy with u(P, s).

A charge-conjugated Bethe-Salpeter amplitude is obtained via

Γ̄(k; P ) = C† Γ(−k;P )T C , (A.13)

where “T” denotes a transposing of all matrix indices and C = γ2γ4 is the
charge conjugation matrix, C† = −C.

In describing the ∆ resonance we employ a Rarita-Schwinger spinor to
unambiguously represent a covariant spin-3/2 field. The positive energy
spinor is defined by the following equations:

(iγ · P + M) uµ(P ; r) = 0 , γµuµ(P ; r) = 0 , Pµuµ(P ; r) = 0 , (A.14)
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where r = −3/2,−1/2, 1/2, 3/2. It is normalised:

ūµ(P ; r′) uµ(P ; r) = 2M , (A.15)

and satisfies a completeness relation

1
2M

3/2∑

r=−3/2

uµ(P ; r) ūν(P ; r) = Λ+(P ) Rµν , (A.16)

where

Rµν = δµνID − 1
3
γµγν +

2
3
P̂µP̂νID − i

1
3
[P̂µγν − P̂νγµ] , (A.17)

with P̂ 2 = −1, which is very useful in simplifying the positive energy ∆’s
Faddeev equation.
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(126) C. J. Burden, C. D. Roberts and M. J. Thomson, Phys. Lett. B371,
163 (1996).

(127) M. B. Hecht, C. D. Roberts and S. M. Schmidt, Phys. Rev. C63,
025213 (2001).

(128) R.T. Cahill, Nucl. Phys. A543, 63C (1992).
(129) K. L. Mitchell and P.C. Tandy, Phys. Rev. C55, 1477 (1997).
(130) A.W. Thomas and K. Holinde, Phys. Rev. Lett. 63, 2025 (1989).
(131) M. Oettel, L. Von Smekal and R. Alkofer, Comput. Phys. Commun.

144, 63 (2002).
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